Updating search results...

Search Resources

164 Results

View
Selected filters:
  • model
Linear Models and Latex Explosion!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use latex tubes and bicycle pumps to conduct experiments to gather data about the relationship between latex strength and air pressure. Then they use this data to extrapolate latex strength to the size of latex tubing that would be needed in modern passenger sedans to serve as hybrid vehicle accelerators, thus answering the engineering design challenge question posed in the first lesson of this unit. Students input data into Excel spreadsheets and generate best fit lines by the selection of two data points from their experimental research data. They discuss the y-intercept and slope as it pertains to the mathematical model they generated. Students use the slope of the line to interpret the data collected. Then they extrapolate with this information to predict the latex dimensions that would be required for a full-size hydraulic accumulator installed in a passenger vehicle.

Subject:
Algebra
Career and Technical Education
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Date Added:
02/17/2017
Load It Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students take a hands-on look at the design of bridge piers (columns). First they brainstorm types of loads that might affect a Colorado bridge. Then they determine the maximum possible load for that scenario, and calculate the cross-sectional area of a column designed to support that load. Choosing from clay, foam or marshmallows, they create model columns and test their calculations.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Macro Lecture Plan: THE SUPER SIMPLE SOLOW MODEL, PART 1: CONDITIONAL CONVERGENCE
Read the Fine Print
Rating
0.0 stars

Lecture Objective: Introduce students to the super simple Solow model. By the end of the lesson, students should be able to identify inputs to growth, solve for the steady state, and identify the factors that lead to conditional convergence.

The lesson incorporates a number of MRU’s videos about the Solow model and conditional convergence from our Principles of Macroeconomics video course. We also mix in discussion prompts, exercises, practice questions, graphs and charts, and pre- and post-class assignments. Finally, we provide supplementary resources such as additional data sources, relevant articles and blog posts, an episode of Planet Money, and even an interview with Robert Solow himself.

Subject:
Economics
Social Science
Material Type:
Lecture
Lecture Notes
Lesson
Lesson Plan
Provider:
Marginal Revolution University
Author:
Alex Tabarrok
Mary Clare Peate
Date Added:
08/08/2017
Magnetic Fields and Distance
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure the relative intensity of a magnetic field as a function of distance. They place a permanent magnet selected distances from a compass, measure the deflection, and use the gathered data to compute the relative magnetic field strength. Based on their findings, students create mathematical models and use the models to calculate the field strength at the edge of the magnet. They use the periodic table to predict magnetism. Finally, students create posters to communicate the details their findings. This activity guides students to think more deeply about magnetism and the modeling of fields while practicing data collection and analysis. An equations handout and two grading rubrics are provided.

Subject:
Algebra
Chemistry
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Ralph Cox
Sabina Schill
Date Added:
02/07/2017
Making Model Microfluidic Devices Using JELL-O
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create large-scale models of microfluidic devices using a process similar to that of the PDMS and plasma bonding that is used in the creation of lab-on-a-chip devices. They use disposable foam plates, plastic bendable straws and gelatin dessert mix. After the molds have hardened overnight, they use plastic syringes to inject their model devices with colored fluid to test various flow rates. From what they learn, students are able to answer the challenge question presented in lesson 1 of this unit by writing individual explanation statements.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michelle Woods
Date Added:
09/18/2014
Making Moon Craters
Read the Fine Print
Educational Use
Rating
0.0 stars

As a weighted plastic egg is dropped into a tub of flour, students see the effect that different heights and masses of the same object have on the overall energy of that object while observing a classic example of potential (stored) energy transferred to kinetic energy (motion). The plastic egg's mass is altered by adding pennies inside it. Because the egg's shape remains constant, and only the mass and height are varied, students can directly visualize how these factors influence the amounts of energy that the eggs carry for each experiment, verified by measurement of the resulting impact craters. Students learn the equations for kinetic and potential energy and then make predictions about the depths of the resulting craters for drops of different masses and heights. They collect and graph their data, comparing it to their predictions, and verifying the relationships described by the equations. This classroom demonstration is also suitable as a small group activity.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Math 1410 Number Concepts for Teachers
Unrestricted Use
CC BY
Rating
0.0 stars

This course is an introduction to problem solving; logic, sets, and operations on sets; and properties and operations on whole numbers, integers, rational numbers, irrational numbers, and real numbers. Modelling techniques necessary for future elementary educators will also be covered in this course.

Subject:
Mathematics
Material Type:
Lecture Notes
Author:
Ashley Morgan
Connie Blalock
Jessica Chambers
Stefanie Holmes
Date Added:
02/15/2022
Mathematically Designing a Frictional Roller Coaster
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply high school-level differential calculus and physics to the design of two-dimensional roller coasters in which the friction force is considered, as explained in the associated lesson. In a challenge the mirrors real-world engineering, the designed roller coaster paths must be made from at least five differentiable functions that are put together such that the resulting piecewise curving path is differentiable at all points. Once designed mathematically, teams build and test small-sized prototype models of the exact designs using foam pipe wrap insulation as the roller coaster track channel with marbles as the ride carts.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Miguel R. Ramirez
Date Added:
08/31/2017
Mini-Landslide
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how different materials (sand, gravel, lava rock) with different water contents on different slopes result in landslides of different severity. They measure the severity by how far the landslide debris extends into model houses placed in the flood plain. This activity is a small-scale model of a debris chute currently being used by engineers and scientists to study landslide characteristics. Much of this activity setup is the same as for the Survive That Tsunami activity in Lesson 5 of the Natural Disasters unit.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Emily Gill
Geoffrey Hill
Malinda Schaefer Zarske
Timothy S. Nicklas
Date Added:
10/14/2015
A Mini World
Read the Fine Print
Educational Use
Rating
0.0 stars

As students learn about the creation of biodomes, they are introduced to the steps of the engineering design process, including guidelines for brainstorming. Students learn how engineers are involved in the design and construction of biodomes and use brainstorming to come up with ideas for possible biodome designs. This lesson is part of a series of six lessons in which students use their growing understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Katherine Beggs
Malinda Schaefer Zarske
Date Added:
09/18/2014
Model Greenhouses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the advantages and disadvantages of the greenhouse effect. They construct their own miniature greenhouses and explore how their designs take advantage of heat transfer processes to create controlled environments. They record and graph measurements, comparing the greenhouse indoor and outdoor temperatures over time. Students are also introduced to global issues such as greenhouse gas emissions and their relationship to global warming.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Molecular Workbench
Read the Fine Print
Rating
0.0 stars

Created by the Concord Consortium, the Molecular Workbench is "a modeling tool for designing and conducting computational experiments across science." First-time visitors can check out one of the Featured Simulations to get started. The homepage contains a number of curriculum modules which deal with chemical bonding, semiconductors, and diffusion. Visitors can learn how to create their own simulations via the online manual, which is available here as well. The Articles area is quite helpful, as it contains full-text pieces on nanoscience education, quantum chemistry, and a primer on how transistors work. A good way to look over all of the offerings here is to click on the Showcase area. Here visitors can view the Featured simulations, or look through one of five topical sections, which include Biotech and Nanotechnology. Visitors will need to install the free Molecular Workbench software, which is available for Windows, Linux, and Mac.

Subject:
Applied Science
Chemistry
Education
Life Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Interactive
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
Concord Consortium Inc.
Date Added:
07/02/2012
Natural and Urban "Stormwater" Water Cycle Models
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their understanding of the natural water cycle and the urban "stormwater" water cycle, as well as the processes involved in both cycles to hypothesize how the flow of water is affected by altering precipitation. Student groups consider different precipitation scenarios based on both intensity and duration. Once hypotheses and specific experimental steps are developed, students use both a natural water cycle model and an urban water cycle model to test their hypotheses. To conclude, students explain their results, tapping their knowledge of both cycles and the importance of using models to predict water flow in civil and environmental engineering designs. The natural water cycle model is made in advance by the teacher, using simple supplies; a minor adjustment to the model easily turns it into the urban water cycle model.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew O'Brien
Austin Childress
Carleigh Samson
Maya Trotz
Ryan Locicero
Date Added:
09/18/2014
Nervous System: Role of the Dendrite
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson will include the idea that the body is a system of interacting subsystems composed of groups of cells focusing the role of neurons and the cells of which they are composed. The structure of neurons will be the focus.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Diagram/Illustration
Lesson
Date Added:
07/24/2019
Not So Simple
Read the Fine Print
Educational Use
Rating
0.0 stars

Students expand upon their understanding of simple machines with an introduction to compound machines. A compound machine a combination of two or more simple machines can affect work more than its individual components. Engineers who design compound machines aim to benefit society by lessening the amount of work that people exert for even common household tasks. This lesson encourages students to critically think about machine inventions and their role in our lives.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
09/18/2014
Not all antibiotics increase fungi in the gut: Focus on amoxicillin-clavulanic acid
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Antibiotics are known to impact the bacteria in our gut microbiome, but their impact on gut fungi has been understudied. It is thought that antibiotics increase the fungal population by decreasing the competition from bacteria for nutrients. But a recent study found that the antibiotic amoxicillin-clavulanic acid has the opposite effect. By examining samples from mice and a small number of human infants, researchers found that this treatment triggered a decrease in intestinal fungi. The treatment also led to a total remodel of the fungal and bacterial population structures in the mouse gut microbiomes. Specifically, the fungal community gained a higher proportion of Aspergillus, Cladosporium, and Valsa groups, and the bacterial community had an increase in bacteria belonging to Enterobacteriaceae. Many Enterobacteriaceae reduce the fungal growth but among them E. hormaechei was particularly active in vitro and in vivo..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
04/17/2023
OER-UCLouvain: A Framework to Understand, Analyse and Describe Online and Open Education in Higher Education
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This paper addresses online and open education. It presents a simple, yet comprehensive framework that can be adopted by any higher education institution in seek of: (1) clarification of terms and concepts related to online and open education, (2) awareness of issues and challenges to set up strategies for online or open learning, (3) informed choices and their impacts on operationalization actions, from an institutional point of view, (4) perspectives on crucial issues, such as mobility, that HEI faces in a context of internationalization, (5) awareness of policymakers and teachers on what open and online education is.
Paper Citation : Jacqmot, C.; Docq, F. and Deville, Y. (2020). A Framework to Understand, Analyse and Describe Online and Open Education in Higher Education.In Proceedings of the 12th International Conference on Computer Supported Education - Volume 1: CSEDU, ISBN 978-989-758-417-6, pages 458-465. DOI: 10.5220/0009470704580465

Subject:
Education
Educational Technology
Material Type:
Primary Source
Author:
Deville Yves
Docq Fran Oise
Jacqmot Christine
Date Added:
07/01/2020
Oil on the Ocean
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about oil spills and their environmental and economic effects. They experience the steps of the engineering design process as they brainstorm potential methods for oil spill clean-up, and then design, build, and re-design oil booms to prevent the spread of oil spills. During a reflective session after cleaning up their oil booms, students come up with ideas on how to reduce oil consumption to prevent future oil spills.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Berkeley Almand
Carleigh Samson
Janet Yowell
Kristen Brown
Malinda Schaefer Zarske
Melissa Straten
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Operation Build a Bridge and Get Over It
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as structural engineers and learn about forces and load distributions as they follow the steps of the engineering design process to design and build small-scale bridges using wooden tongue depressors and glue. Teams brainstorm ideas that meet the size and material design constraints and create prototype bridges of the most promising solutions. They test their bridges to see how much weight they can hold until they break and then determine which have the highest strength-to-weight ratios. They examine the prototype failures to identify future improvements. This activity is part of a unit in which multiple activities are brought together for an all-day school/multi-school concluding “engineering field day” competition.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Nadia Richards
Date Added:
01/01/2015
Panoptes and the Bionic Eye
Read the Fine Print
Educational Use
Rating
0.0 stars

Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Gisselle Cunningham
Michael Trumpis
Shingi Middelmann
Date Added:
10/14/2015