Search Results (2210)

View
Selected filters:
  • Biology
1918 Flu
Conditions of Use:
Read the Fine Print
Rating

In this Science Update from Science NetLinks, features an interview with Yoshihiro Kawaoko a virologist at the University of Wisconsin. In this interview, Kawako describes what made 1918 flu virus, which killed 20 million people, so deadly.

Subject:
Biology
Material Type:
Activity/Lab
Lecture
Teaching/Learning Strategy
Provider:
AAAS
Provider Set:
Science Netlinks
Date Added:
11/23/2008
2009 Maize Genome Collection
Conditions of Use:
No Strings Attached
Rating

The authors of the research presented in this special collection used the first description of the B73 maize genome to probe some of the most intriguing questions in genetics and plant biology. Read about maize centromeres, new insights into transposon types and distribution, the abundance of very short FLcDNAs encoding predicted peptides, and many other "genetic jewels" contained herein.

Subject:
Biology
Genetics
Material Type:
Data Set
Primary Source
Provider:
Public Library of Science
Provider Set:
Biology and Life Sciences
Date Added:
04/11/2016
3D FractaL-Tree
Conditions of Use:
Read the Fine Print
Rating

3D FractaL-Tree allows scientists to collect data from actual specimens in the field or laboratory, insert these measurements into a spatially explicit L-system package, and then visually compare to the computer generated 3D image with such specimens. The measurements are recorded and analyzed in a series of worksheets in Microsoft Excel퉌Ź and the results are entered into the graphics engine in a Java applet. 3D FractaL-Tree produces a rotatable three-dimensional image of the tree which is helpful for examining such characters as self-avoidance (entanglement and breakage), penetration of sunlight, distances that small herbivores (such as caterpillars) would have to traverse to go from one tip to another, and Voronoi polyhedra of volume distribution of biomass on different subsections of a tree. These and other factors have been discussed in the Adaptive Geometry of Trees (Horn, 1971). Three different representations are available in 3D FractaL-Tree images: wire frame, solid, and transparent. Easy options for saving and exporting images are included.

Subject:
Biology
Material Type:
Activity/Lab
Simulation
Provider:
BioQUEST Curriculum Consortium
Provider Set:
The Biological ESTEEM Collection
Author:
Jennifer Spangenberg
John Jungck
Jutarat Maneewattanapluk
Noppadon Khiripet
Rawin Viruchpinta
Date Added:
07/18/2007
3D FractaL-Tree
Conditions of Use:
Read the Fine Print
Rating

This interactive L-system simulation produces visualizations of tree forms based on data from specimens in the field or laboratory.

Subject:
Biology
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Lesson Plan
Simulation
Provider:
BioQUEST Curriculum Consortium
Provider Set:
The BioQUEST Library Online
Author:
Jennifer A Spangenberg
John R. Jungck
Jutarat Maneewattanapluk
Noppadon Khiripet
Rawin Viruchpinta
Date Added:
04/25/2013
6.5 Nerves, Hormones & Homeostasis
Conditions of Use:
Remix and Share
Rating

6.5 Nerves, Hormones & Homeostasis | i-Biologyi-biology.net/ibdpbio/06-human-health.../nerves-hormones-homeostasis/‎Cached
SimilarEssential Biology 6.5 Nerves, Hormones and Homeostasis .........o0O0o. ... Tutorial and game from think-bank ..... Online Learning ... Creative Commons License

Subject:
Anatomy/Physiology
Biology
Material Type:
Diagram/Illustration
Interactive
Unit of Study
Provider:
i-Biology
Provider Set:
Individual Authors
Author:
Stephen Taylor
Date Added:
02/03/2014
AMINO ACID FREQUENCY
Conditions of Use:
No Strings Attached
Rating

Introduction: Genetic information contained in mRNA is in the form of codons, sequences of three nucleotides, which are translated into amino acids which then combine to form proteins. At certain sites in a protein's structure, amino acid composition is not critical. Yet certain amino acids occur at such sites up to six times more often than other amino acids. In the 1960's, molecular biologists sought to determine if amino acid composition was a reflection of the genetic code or if certain amino acids were naturally selected as optimal.

Question: Are frequencies of particular amino acids simply a consequence of random permutations of the genetic code or instead a product of natural selection?

Supplement to 'The Genetic Code': https://cnx.org/contents/jVCgr5SL@15.43:aXYynRWE@10/15-1-The-Genetic-Code

Subject:
Biology
Genetics
Material Type:
Activity/Lab
Provider:
University of Tennessee Knoxville
Provider Set:
The Institute for Environmental Modeling
Author:
L. Gross
M. Beals
S. Harrell
Date Added:
05/17/2019
ANTIBODY BINDING
Conditions of Use:
No Strings Attached
Rating

Introduction: Antibodies are proteins that react with foreign invaders during a humoral immune response. Antigens, small substituents of foreign invaders, elicit an immune response when they bind to the antibody. Variable regions of amino acid chains comprising the antibody create binding sites. A particular antibody has specificity to bind to one or more particular antigens.

Questions: How is antigen binding to an antibody related to antigen concentration? How can we determine binding properties of antibodies?

Supplement to 'Anitbodies': https://cnx.org/contents/jVCgr5SL@15.43:jN1G3E9L@10/42-3-Antibodies

Subject:
Anatomy/Physiology
Biology
Material Type:
Activity/Lab
Provider:
University of Tennessee Knoxville
Provider Set:
The Institute for Environmental Modeling
Author:
L. Gross
M. Beals
S. Harrell
Date Added:
05/17/2019
A&P Identification PowerPoint Presentations
Conditions of Use:
Remix and Share
Rating

Anatomy and Physiology Lab I slide decks created by Steven Lee M.S. Pathology, FTCC. The PowerPoints include labeled body images to assist students in identifying body parts. Nicole Shaw is only responsible for assisting Steven with licensing his work under an open license and uploading content to the Commons. 

Subject:
Health, Medicine and Nursing
Higher Education
Anatomy/Physiology
Biology
Material Type:
Module
Author:
Nicole Shaw
Date Added:
06/29/2018
ATP: The Fuel of Life
Conditions of Use:
Remix and Share
Rating

The goal of this lesson is to introduce students who are interested in human biology and biochemistry to the subtleties of energy metabolism (typically not presented in standard biology and biochemistry textbooks) through the lens of ATP as the primary energy currency of the cell. Avoiding the details of the major pathways of energy production (such as glycolysis, the citric acid cycle, and oxidative phosphorylation), this lesson is focused exclusively on ATP, which is truly the fuel of life. Starting with the discovery and history of ATP, this lesson will walk the students through 8 segments (outlined below) interspersed by 7 in-class challenge questions and activities, to the final step of ATP production by the ATP synthase, an amazing molecular machine. A basic understanding of the components and subcellular organization (e.g. organelles, membranes, etc.) and chemical foundation (e.g. biomolecules, chemical equilibrium, biochemical energetics, etc.) of a eukaryotic cell is a desired prerequisite, but it is not a must. Through interactive in-class activities, this lesson is designed to spark the students’ interest in biochemistry and human biology as a whole, but could serve as an introductory lesson to teaching advanced concepts of metabolism and bioenergetics in high school depending on the local science curriculum. No supplies or materials are needed.

Subject:
Life Science
Biology
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Christian Schubert
Date Added:
02/13/2015
ATP as Cellular Energy
Conditions of Use:
Remix and Share
Rating

In this seminar you will read closely and analyze the structure of ATP- Adenosine Triphosphate. You will curate your own  information about the importance of ATP in a cell by listening and reading text as to what the experts have to say.  By modeling the function of ATP in an inquiry lab you can accurately identify the  various levels of cellular work done by Adenosine Triphosphate.StandardsBIO.A.3.1.1 Describe the fundamental roles of plastids (e.g., chloroplasts) and mitochondria in energy transformations.BIO.A.3.2.1 Compare and contrast the basic transformation of energy during photosynthesis and cellular respiration.BIO.A.3.2.2 Describe the role of ATP in biochemical reactions

Subject:
Life Science
Biology
Material Type:
Lesson Plan
Author:
Bonnie Waltz
Date Added:
10/05/2017
Aboard Alvin
Rating

This Gulf of Maine educational website takes students aboard the submersible Alvin. Classroom activities explore nautical and mythical names, such as the Titanic, instruct students how to make a model of the ocean floor in a shoebox, and introduce topics such as deep sea vents and plate tectonics.

Subject:
Biology
Material Type:
Activity/Lab
Provider:
Gulf of Maine Aquarium
Microbial Life (MLER) (SERC)
Date Added:
10/28/2006
Acid Rain Destruction
Conditions of Use:
Remix and Share
Rating

Developed for third grade. Students will:; understand the damaging effects of acid rain on the environment.; understand the damaging effects of acid rain on plants.; pose a hypothesis and use the scientific method.Biology In Elementary Schools is a Saint Michael's College student project. The teaching ideas on this page have been found, refined, and developed by students in a college-level course on the teaching of biology at the elementary level. Unless otherwise noted, the lesson plans have been tried at least once by students from our partner schools. This wiki has been established to share ideas about teaching biology in elementary schools. The motivation behind the creation of this page is twofold: 1. to provide an outlet for the teaching ideas of a group of college educators participating in a workshop-style course; 2. to provide a space where anyone else interested in this topic can place their ideas.

Subject:
Biology
Ecology
Material Type:
Activity/Lab
Lesson Plan
Provider:
WikiEducator
Date Added:
02/16/2011
Acid Stomach
Conditions of Use:
Read the Fine Print
Rating

This Science NetLinks lesson is intended for a high-school, introductory chemistry class or health class. The lesson begins with an article on the history of the development of aspirin. Students will then complete a lab that compares the reaction of regular aspirin, buffered aspirin, and enteric aspirin in neutral, acidic, and basic solutions. They will then analyze the results of the experiment to gain insight into how this information was used by researchers to solve some of the problems associated with aspirin. To complete the lesson, students must understand acids and bases.

Subject:
Anatomy/Physiology
Biology
Chemistry
Material Type:
Lesson Plan
Teaching/Learning Strategy
Provider:
AAAS
Provider Set:
Science Netlinks
Date Added:
08/08/2007