Updating search results...

Search Resources

517 Results

View
Selected filters:
  • Atmospheric Science
1-ESS1-1 Proficiency Scale
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This is a task neutral proficiency scale for 1-ESS1-1. Resources used to make this: NGSS.NSTA.org, Appendix E from the NextGenScience site and the actual performance expectations. This scale was created through collaboration with five elementary teachers.

Subject:
Physical Science
Astronomy
Atmospheric Science
Material Type:
Assessment
Author:
Maggie Bly
Date Added:
04/26/2019
2014 National Climate Assessment
Unrestricted Use
Public Domain
Rating
0.0 stars

The National Climate Assessment assesses the science of climate change and its impacts across the United States, now and throughout this century. It documents climate change related impacts and responses for various sectors and regions, with the goal of better informing public and private decision-making at all levels.

Subject:
Atmospheric Science
Material Type:
Reading
Provider:
United States Global Change Research Program
Date Added:
01/01/2014
5-ESS1-1 Proficiency Scale
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This is a task neutral proficiency scale for 5-ESS1-1. Resources used to make this: NGSS.NSTA.org, Appendix E from the NextGenScience site and the actual performance expectations. This scale was created through collaboration with five elementary teachers.

Subject:
Physical Science
Astronomy
Atmospheric Science
Material Type:
Assessment
Author:
Maggie Bly
Date Added:
04/25/2019
6.5 Natural Hazards
Unrestricted Use
CC BY
Rating
0.0 stars

This unit begins with students experiencing, through text and video, a devastating natural event that caused major flooding in coastal towns of Japan. Through this anchoring phenomenon, students think about ways to detect tsunamis, warn people, and reduce damage from the wave. As students design solutions to solve this problem, they begin to wonder about the natural hazard itself: what causes it, where it happens, and how it causes damage.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Applied Science
Physical Science
Atmospheric Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
OpenSciEd
Date Added:
02/11/2022
7.5 Ecosystem Dynamics
Unrestricted Use
CC BY
Rating
0.0 stars

How does changing an ecosystem affect what lives there? This unit on ecosystem dynamics and biodiversity begins with students reading headlines that claim that the future of orangutans is in peril and that the purchasing of chocolate may be the cause. Students then examine the ingredients in popular chocolate candies and learn that one of these ingredients--palm oil--is grown on farms near the rainforest where orangutans live. This prompts students to develop initial models to explain how buying candy could impact orangutans.

This unit is part of the OpenSciEd core instructional materials for middle school.

Subject:
Engineering
Environmental Studies
Life Science
Atmospheric Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
OpenSciEd
Date Added:
02/11/2022
Air Masses
Read the Fine Print
Rating
0.0 stars

This is Activity 12 of a set of Level 1 activities designed by the Science Center for Teaching, Outreach, and Research on Meteorology (STORM) Project. The authors suggest that previous activities in the unit be completed before Activity 12: Air Masses, including those that address pressure systems and dew point temperature. In Activity 12, the students learn about the four main types of air masses that affect weather in the United States, their characteristic temperatures, and humidity levels as it relates to dew point temperatures. The lesson plan follows the 5E format. Initially, students discuss local weather and then examine surface temperature and dew point data on maps to determine patterns and possible locations of air masses. They learn about the source regions of air masses and compare their maps to a forecast weather map with fronts and pressure systems drawn in. During the Extension phase, students access current maps with surface and dew point temperatures at http://www.uni.edu/storm/activities/level1 and try to identify locations of air masses. They sketch in fronts and compare their results to the fronts map. Evaluation consists of collection of student papers.

Subject:
Atmospheric Science
Material Type:
Activity/Lab
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
10/12/2015
Air Particulate Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Phase 1: Definition of Projects and Research Teams (Homework +1 Class)

Each student is assigned the task of proposing a site to investigate within the city and the surrounding region. Students are encouraged to discuss the assignment with community members for suggestions and inspiration. Each student will produce an easel-size poster of their proposal highlighting the following:


Site location;

Reasons for selecting this site;

Potential interest to the community;

Potential logistical problems associated with the proposed site/project.

Posters will be hung in a gallery-walk format, and each student will mark the location of their proposed study site on the classroom map of New York City. The class is given time to read and comment on each of their peers' proposals, after which the instructor will lead a class discussion of the interests, merits, and obstacles associated with each proposal, with the goal of having the class settle on the set of projects on which to move forward.
Students will define groups of 2 to 4 students per project. If more than 4 students are interested in the same site, then multiple groups may develop parallel projects.

Phase 2: Data Collection and Analysis (5 weeks)

In consultation with the instructor, teams develop and implement a sampling protocol, including the documentation of terrain, human activity, and weather conditions (wind speed and direction) at the time of collection. Sample stations and prevailing wind direction are plotted on Google Earth to determine likely sources of particulates. Using binocular microscopes students document size distribution, form, color, and abundance of particulates. This data is analyzed using statistical functions in Excel. Teams use SEM-EDS analysis to determine the composition of particles, and more fully describe their form. Teams submit weekly progress reports, including personal work reports for each team member.

Phase 3: Communication of Results (1 Week)

Teams submit to their instructor a formal laboratory report: Purpose, Equipment, Method, Data Tabulation, Data Analysis, and Conclusions.
Teams prepare an oral presentation, or visual information campaign, targeted at an audience of their choice (e.g., neighbors, church group, community activist group, college administration) using discourse appropriate to that audience. Teams present in an in-class dress-rehearsal prior to their formal presentation. Teams invite members of their desired audience to the presentation (official invitations sent). On the last day of class, the instructor leads a debriefing and critique of the presentations, highlighting results and effective communication techniques.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Atmospheric Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Wayne Powell
Date Added:
12/10/2020
Air Pollution in the Pacific Northwest
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to measuring and identifying sources of air pollution, as well as how environmental engineers try to control and limit the amount of air pollution. In Part 1, students are introduced to nitrogen dioxide as an air pollutant and how it is quantified. Major sources are identified, using EPA bar graphs. Students identify major cities and determine their latitudes and longitudes. They estimate NO2 values from color maps showing monthly NO2 averages from two sources: a NASA satellite and the WSU forecast model AIRPACT. In Part 2, students continue to estimate NO2 values from color maps and use Excel to calculate differences and ratios to determine the model's performance. They gain experience working with very large numbers written in scientific notation, as well as spreadsheet application capabilities.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Farren Herron-Thorpe
Date Added:
09/18/2014
Air Quality: More than Meets the Eye
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this module, students engage in a visual demonstration on the causes & effects of air pollutants on air quality and kinesthetic activities on particulate matter & visibility.

Subject:
Atmospheric Science
Material Type:
Lesson
Provider:
University of Colorado Boulder
Provider Set:
Cooperative Institute for Research in Environmental Sciences (CIRES)
Date Added:
01/01/2014
Air Under Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to air masses, with an emphasis on the differences between and characteristics of high- versus low-pressure air systems. Students also hear about weather forecasting instrumentation and how engineers work to improve these instruments for atmospheric measurements on Earth and in space.

Subject:
Engineering
Atmospheric Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date Added:
09/18/2014
Airplanes and Climate Change Educator Guide
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How much of an impact does air travel have on climate change? What can be done about it? Through a hands-on demonstration and a short literature review, students consider the impacts and future of aviation. With data, students consider why climate communicators and scientists focus on carbon dioxide. This guide is an extension of the TILclimate episode "TIL about planes."

Subject:
Atmospheric Science
Material Type:
Lesson Plan
Provider:
MIT
Provider Set:
TILclimate Educator Hub
Date Added:
11/16/2022
Analysis of Global Temperature Trends
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lab activity is designed for science students in an introductory climatology course. Upon successful completion of the activity, students will have demonstrated an ability to:

Independently navigate and download climate data from online data libraries.
Work with different file types (NetCDF and CSV).
Write appropriate MATLAB code to read and manipulate climate data, and create plots (time series and maps) as instructed.
Extract meaningful information from large 3-dimensional datasets.
Understand and apply fundamental climatology concepts, such as:

Climate statistics (temporal and spatial mean and anomaly; trends; baselines)
Ice-albedo feedback resulting in disproportionate sensitivity to climate change in polar regions

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Atmospheric Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Janel Hanrahan
Date Added:
11/25/2019
Analyzing the Antarctic Ozone Hole (College Level)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

College-level adaptation of a chapter in the Earth Exploration Toolbook. Examine satellite images of atmospheric ozone in the Southern Hemisphere to study changes in concentration over a time.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Atmospheric Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Brian Welch
Date Added:
08/25/2020
Anatomy of a Raindrop
Read the Fine Print
Rating
0.0 stars

This short video (~2 minutes) explains how a raindrop falls through the atmosphere and why a more accurate look at raindrops can improve estimates of global precipitation. This information is important to scientists working on the Global Precipitation Measurement (GPM) mission - understanding the micro world of raindrops provides insight to scientists about the macro world of storms.

Subject:
Mathematics
Atmospheric Science
Physics
Material Type:
Lecture
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Anchoring Phenomenon Routine - Storyline Tool
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Instructional sequences are more coherent when students investigate compelling natural phenomena (in science) or work on meaningful design problems (in engineering) by engaging in the science and engineering practices. We refer to these phenomena and design problems here as ‘anchors.’Here is a tool to assist in determining if the elements of the anchoring phenomenon are strong or could use some additional thinking. Original works can be found at NextGenStorylines.org

Subject:
Environmental Science
Life Science
Biology
Physical Science
Atmospheric Science
Chemistry
Geology
Physics
Material Type:
Teaching/Learning Strategy
Author:
Jamie Rumage
Date Added:
12/29/2020
Anchoring Phenomenon Routine for Kindergarten Weather
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Anchoring Phenomenon Routine is the launch to student investigation around the anchoring phenomenon. This phenomenon will be the one that students will describe and explain, using disciplinary core ideas, science and engineering practices and crosscutting concepts in investigations. The Anchoring Phenomenon Routine will encourage thoughtful consideration of the phenomenon, initial models, connections to related phenomenon, discussions about the phenomenon and the creation of the KLEWS chart used for documenting student learning. In an Anchoring Phenomenon Routine, ​students​:
● ​Are presented with a phenomenon or design problem
● ​Write and discuss what they notice and wonder about from the initial presentation
● ​Create and compare initial models of the phenomenon or problem
● ​Identify related experiences and knowledge that they could draw upon to explain the phenomenon or solve the problem
● ​Construct a KLEWS Chart
● ​Identify potential investigations to answer the questions on the KLEWS Chart, adding the questions to the chart

Subject:
Applied Science
Environmental Science
Atmospheric Science
Material Type:
Activity/Lab
Homework/Assignment
Author:
Michigan Mathematics & Science Leadership
Michigan Science Teachers Association
Date Added:
08/17/2020
Angle of Light Rays and Surface Distribution
Read the Fine Print
Rating
0.0 stars

This experimental activity is designed to develop basic understanding of the relationship between the angle of light rays and the area over which the light rays are distributed, and the potential to affect changes in the temperature of materials. Resources needed to conduct this activity include a flashlight, cardboard, protractor and ruler. The resource includes background information, a pre-activity inquiry exploration for students, teaching tips and questions to guide student discussion. This is chapter 4 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.

Subject:
Atmospheric Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Antarctic Life & Albedo
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this lesson, students explore the importance of albedo (or reflectivity) to penguins and the surfaces they inhabit and learn how penguin colonies may be mapped using satellites.

Subject:
Atmospheric Science
Material Type:
Lesson
Provider:
University of Colorado Boulder
Provider Set:
Cooperative Institute for Research in Environmental Sciences (CIRES)
Date Added:
12/01/2020
Antarctica in Images
Read the Fine Print
Rating
0.0 stars

This classroom activity introduces students to Antarctica's organisms, landscapes, and seascapes. After examining the images in the photo gallery, students work in small groups to discuss their conclusions about the living conditions on this continent. The printable three-page handout includes a series of questions to help students structure their thoughts while viewing the gallery images and a group worksheet that guides students through a discussion of their evolving hypotheses and conclusions.

Subject:
Atmospheric Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
American Museum of Natural History
Provider Set:
American Museum of Natural History
Date Added:
10/15/2014
App GeoSensor
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

O aplicativo GeoSensor é o produto técnico da dissertação de mestrado intitulada: App GeoSensor, Geotecnologias Aplicadas ao Ensino das Ciências Ambientais, apresentada ao Programa de Pós-Graduação em Rede Nacional para Ensino das Ciências Ambientais – Profciamb, núcleo UFPA. O app foi concebido como uma forma de disseminar conhecimentos em Geotecnologias, de maneira didática e acessível, além de fazer paralelo com conhecimentos de disciplinas curriculares, como matemática, física e química, de modo a servir como incentivo ao Ensino de Ciências Ambientais, despertando o interesse dos alunos, utilizando exemplos de aplicações práticas de conceitos vistos em sala de aula, além de possibilitar aos educadores demonstrar as aplicações do conhecimento obtido em sala na vida de todos.
O aplicativo foi desenvolvido tendo como público-alvo discentes e docentes do ensino médio, com possibilidades de aplicação também a partir do ensino fundamental 2, bem como em níveis técnico e superior.

Subject:
Environmental Science
Information Science
Educational Technology
Atmospheric Science
Geology
Hydrology
Physical Geography
Physics
Material Type:
Diagram/Illustration
Lesson
Author:
João Paulo Abreu Almeida
Date Added:
01/17/2022