Updating search results...

Search Resources

153 Results

View
Selected filters:
  • Physics
  • Community College / Lower Division
  • Student
  • Text/HTML
  • English
  • Conditional Remix & Share Permitted
Adaptive Antennas and Phased Arrays
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The 16 lectures in this course cover the topics of adaptive antennas and phased arrays. Both theory and experiments are covered in the lectures. Part one (lectures 1 to 7) covers adaptive antennas. Part two (lectures 8 to 16) covers phased arrays. Parts one and two can be studied independently (in either order). The intended audience for this course is primarily practicing engineers and students in electrical engineering. This course is presented by Dr. Alan J. Fenn, senior staff member at MIT Lincoln Laboratory.
Online Publication

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fenn, Alan
Date Added:
02/01/2010
The Adventure of Physics - Vol. I: Fall, Flow, and Heat
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and space move leads to many adventures. This volume presents the best of them in the domain of everyday life.

Carefully observing everyday motion allows us to deduce six essential statements: everyday motion is continuous, conserved, relative, reversible, mirror-invariant – and lazy. Yes, nature is indeed lazy: in every motion, it minimizes change. This text explores how these six results are deduced and how they fit with all those observations that seem to contradict them. In the structure of modern physics, shown in Figure 1, the results on everyday motion form the major part of the starting point at the bottom. The present volume is the first of a six-volume overview of physics. It resulted from a threefold aim I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Reading a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clarifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
02/20/2015
The Adventure of Physics - Vol. III: Light, Charges, and Brains
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adven- tures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Special relativity is the exploration of the energy speed limit c. General relativity is the exploration of the force limit c4/4G. The text shows that in both domains, all equations follow from these two limit values. This simple, intuitive and unusual way of learning relativity should reward the curiosity of every reader – whether student or professional.

The present volume is the second of a six-volume overview of physics that arose from a threefold aim that I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
02/20/2015
The Adventure of Physics - Vol. II: Relativity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adventures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
02/20/2015
The Adventure of Physics - Vol. VI: The Strand Model - A Speculation on Unification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is intensely curious about nature and motion. Have you ever asked: Why do people, animals, things, images and empty space move? The answer leads to many adventures, and this book presents one of the best of them: the search for a precise, unified and final description of all motion.

The wish to describe all motion is a large endeavour. Fortunately, this large endeavour can be structured in the simple diagram shown in Figure 1. The final and unified description of motion, the topic of this book, corresponds to the highest point in the diagram. Searching for this final and unified description is an old quest. In the following, I briefly summarize its history and then present an intriguing, though speculative solution to the riddle.

The search for the final, unified description of motion is a story of many surprises. For example, twentieth-century research has shown that there is a smallest distance in nature. Research has also shown that matter cannot be distinguished from empty space at those small distances. A last surprise dates from this century: particles and space are best described as made of strands, instead of little spheres or points. The present text explains how to reach these unexpected conclusions. In particular, quantum field theory, the standard model of particle physics, general relativity and cosmology are shown to follow from strands. The three gauge interactions, the three particle generations and the three dimensions of space turn out to be due to strands. In fact, all the open questions of twentieth-century physics about the foundations of motion, all the millennium issues, can be solved with the help of strands.

The strand model, as presented in this text, is an unexpected result from a threefold aim that I have pursued since 1990, in the five previous volumes of this series: to present the basics of motion in a way that is up to date, captivating and simple. In retrospect, the aim for maximum simplicity has been central in deducing this speculation. While the previous volumes introduced, in an entertaining way, the established parts of physics, this volume presents, in the same entertaining and playful way, a speculation about unification. Nothing in this volume is established knowledge – yet. The text is the original presentation of the topic.

The search for a final theory is one of the great adventures of life: it leads to the limits of thought. The search overthrows our thinking habits about nature. A change in thinking habits can produce fear, often hidden by anger. But by overcoming our fears we gain strength and serenity. Changing thinking habits thus requires courage, but it also produces intense and beautiful emotions. Enjoy them!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
02/20/2015
The Adventure of Physics - Vol. V: Motion Inside Matter - Pleasure, Technology, and Stars
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Curiosity about how bodies, images and empty space move leads to many adventures. This volume presents the best adventures about the motion inside people, inside animals, and inside any other type of matter – from the largest stars to the smallest nuclei.

Motion inside bodies – dead or alive – is described by quantum theory. Quantum theory describes all motion with the quantum of action h, the smallest change observed in nature. Building on this basic idea, the text first shows how to describe life, death and pleasure. Then, the text explains the observations of chemistry, materials science, astrophysics and particle physics. In the structure of physics, these topics correspond to the three ‘quantum’ points in Figure 1. The story of motion inside living and non-living matter, from the coldest gases to the hottest stars, is told here in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Read- ing a book on physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one sur- prise that makes the reader think. Also numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clar- ifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
02/20/2015
Attraction and Repulsion: The Magic of Magnets
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Freshman Advising Seminar surveys the many applications of magnets and magnetism. To the Chinese and Greeks of ancient times, the attractive and repulsive forces between magnets must have seemed magical indeed. Through the ages, miraculous curative powers have been attributed to magnets, and magnets have been used by illusionists to produce "magical" effects. Magnets guided ships in the Age of Exploration and generated the electrical industry in the 19th century. Today they store information and entertainment on disks and tapes, and produce sound in speakers, images on TV screens, rotation in motors, and levitation in high-speed trains. Students visit various MIT projects related to magnets (including superconducting electromagnets) and read about and discuss the history, legends, pseudoscience, science, and technology of types of magnets, including applications in medicine. Several short written reports and at least one oral presentation will be required of each participant.

Subject:
Arts and Humanities
History
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Livingston, James
Date Added:
09/01/2005
Basics of Analysis with Antineutrinos from Heat Producing Elements - K, U, Th in the Earth
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the following questions. What are the predominant heat producing elements of the Earth? Where and how much are they? Are they present in the core of the Earth? Detection of antineutrinos generated in the Earth provides: 1) information on the sources of the terrestrial heat, 2) direct test of the Bulk Silicate Earth (BSE) model and 3) testing of non-conventional models of Earth's core. Use of antineutrinos to probe the deep interior of our planet is becoming practical due to recent fundamental advances in the antineutrino detectors.

Subject:
Applied Science
Atmospheric Science
Chemistry
Engineering
Environmental Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Pillalamarri, Ila
Date Added:
01/01/2010
Biological Engineering II: Instrumentation and Measurement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.

Subject:
Applied Science
Biology
Career and Technical Education
Electronic Technology
Engineering
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Manalis, Scott
Shusteff, Maxim
So, Peter
Date Added:
09/01/2006
Blogpost - New DIY Grow Lights for Fast Plants
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This blog post by the Fast Plants Team provides a materials list and instructions for a Do-It-Yourself, LED Grow Light that is ideal for Fast Plants growth. This grow light uses cost-effective materials that can be obtained online and from a local hardware store. The light is easy to construct, powerful, and height adjustable, which helps simplify the goal of keeping your grow light close to your developing Fast Plants. This post also explains what it means to provide optimal lighting for seedlings and describes why it is important to understand light intensity and its effect on growing plants.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Reading
Provider:
Wisconsin Fast Plants Program
Author:
Hedi Baxter Lauffer
Date Added:
05/25/2023
Body Physics 2.0
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Short Description:
Body Physics sticks to the basic functioning of the human body, from motion to metabolism, as a common theme through which fundamental physics topics are introduced. Related practice, reinforcement and Lab activities are included. See the front matter for more details. Additional supplementary material, activities, and information can be found at: https://openoregon.pressbooks.pub/bpsupmat/. Order a print copy: http://www.lulu.com/content/paperback-book/body-physics-motion-to-metabolism/26081318

Long Description:
Body Physics sticks to the basic functioning of the human body, from motion to metabolism, as a common theme through which fundamental physics topics are introduced. Related practice, reinforcement and Lab activities are included. See the front matter for more details. Additional supplementary material, activities, and information can be found at: https://openoregon.pressbooks.pub/bpsupmat/. Specific topics covered in Body Physics are: scientific process, units, uncertainty, mass, density, weight, buoyant force, equilibrium, center of gravity, normal force, friction, torque, levers, mechanical advantage, tension, motion, impulse, momentum, the laws of motion, strength and elasticity of materials, work, kinetic and potential energy, power, thermal energy the first law of thermodynamics, efficiency, heat, entropy, and 2nd law of thermodynamics.

Word Count: 98402

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Anatomy/Physiology
Life Science
Physical Science
Physics
Material Type:
Textbook
Provider:
Open Oregon Educational Resources
Date Added:
01/26/2024
Body Physics: Motion to Metabolism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Short Description:
Body Physics sticks to the basic functioning of the human body, from motion to metabolism, as a common theme through which fundamental physics topics are introduced. Related practice, reinforcement and Lab activities are included. See the front matter for more details. Additional supplementary material, activities, and information can be found at: https://openoregon.pressbooks.pub/bpsupmat/. Order a print copy: http://www.lulu.com/content/paperback-book/body-physics-motion-to-metabolism/26081318

Long Description:
Body Physics sticks to the basic functioning of the human body, from motion to metabolism, as a common theme through which fundamental physics topics are introduced. Related practice, reinforcement and Lab activities are included. See the front matter for more details. Additional supplementary material, activities, and information can be found at: https://openoregon.pressbooks.pub/bpsupmat/. Specific topics covered in Body Physics are: scientific process, units, uncertainty, mass, density, weight, buoyant force, equilibrium, center of gravity, normal force, friction, torque, levers, mechanical advantage, tension, motion, impulse, momentum, the laws of motion, strength and elasticity of materials, work, kinetic and potential energy, power, thermal energy the first law of thermodynamics, efficiency, heat, entropy, and 2nd law of thermodynamics.

Order a print copy: http://www.lulu.com/content/paperback-book/body-physics-motion-to-metabolism/26081318

Word Count: 112607

ISBN: 978-1-63635-046-2

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Anatomy/Physiology
Life Science
Physical Science
Physics
Material Type:
Textbook
Provider:
Open Oregon Educational Resources
Author:
Lawrence Davis
Date Added:
11/29/2018
Body Physics Remote Lab Manual
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This remote learning lab manual was created to guide students in 100-level physical science courses toward meeting the first outcome in the science category of the Associate of Arts Oregon Transfer Degree:

Gather, comprehend, and communicate scientific and technical information in order to explore ideas, models, and solutions and generate further questions.

The lab design goal was to adapt existing F2F labs (already aligned to AAOT science outcome #1) for a remote learning environment without abandoning the pedagogical advantages provided by combining guided inquiry methods with specialized physics education equipment, such as digital sensors and unique demonstration apparatus. Therefore, many of the labs contain embedded videos of experiments being performed and links to open-access Google spreadsheets containing the data produced by equipment during the experiments. In many cases overlay effects have been added to videos to provide additional experimental parameters, direct students' attention to important occurrences, or and assist with understanding of the experimental methods. The data in the spreadsheets has been edited to remove irrelevant data (e.g. acceleration data automatically collected by lab software before the release of a moving fan cart).

I have found that students do require roughly 1-3 instructor interactions per lab to complete them successfully. As such, the labs current state these labs might not be amenable to a totally asynchronous learning environment.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
OpenOregon
Author:
Lawrence Davis
Date Added:
06/17/2021
Body Physics: Supplementary Material
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Short Description:
Body Physics: Supplementary Material serves as a repository for materials and information designed to supplement the general physics textbook Body Physics: Motion to Metabolism, which can be seen at: https://openoregon.pressbooks.pub/bodyphysics/. The supplementary material is not necessary to make use of Body Physics: Motion to Metabolism, which is self-contained including practice and reinforcement exercises, lab activities and group project ideas.

Long Description:
Body Physics: Supplementary Material serves as a repository for materials and information designed to supplement the general physics textbook Body Physics: Motion to Metabolism, which can be seen at: https://openoregon.pressbooks.pub/bodyphysics/. The supplementary material is not necessary to make use of Body Physics: Motion to Metabolism, which is self-contained including practice and reinforcement exercises, lab activities and group project ideas. Supplementary material includes: additional lab activities; content created by students through open pedagogy assignments; conference presentations about the design, development, and use of Body Physics; and research related to the use, assessment, and improvement of Body Physics (coming soon).

Word Count: 60301

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Anatomy/Physiology
Life Science
Physical Science
Physics
Material Type:
Textbook
Author:
Lawrence Davis
Date Added:
10/11/2021
Chandra Astrophysics Institute
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Chandra Astrophysics Institute (CAI), a Chandra X-ray Observatory–sponsored program run by the MIT Kavli Institute for Astrophysics and Space Research, was intended for students from the Boston area from a wide range of academic backgrounds with a limited opportunity to directly experience authentic science. 
The CAI was a year-long program to train for and take part in authentic astronomy projects. Participants built employable research, technology, and collaboration skills and the background knowledge necessary to understand how research science is done. Investigations of different astronomical systems were undertaken during a five-week summer session at MIT. Participants, mentored by MIT researchers and educators, then applied these skills to undertake research projects in x-ray astronomy based on observations made with the Chandra X-Ray Observatory.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ahmed, Shakib
Ashton, Peter
Hartman , Mark
Kol, Simba
Porro, Irene
Date Added:
03/18/2024
Classical Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This first course in the physics curriculum introduces classical mechanics. Historically, a set of core concepts—space, time, mass, force, momentum, torque, and angular momentum—were introduced in classical mechanics in order to solve the most famous physics problem, the motion of the planets.
The principles of mechanics successfully described many other phenomena encountered in the world. Conservation laws involving energy, momentum and angular momentum provided a second parallel approach to solving many of the same problems. In this course, we will investigate both approaches: Force and conservation laws.
Our goal is to develop a conceptual understanding of the core concepts, a familiarity with the experimental verification of our theoretical laws, and an ability to apply the theoretical framework to describe and predict the motions of bodies.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chakrabarty, Deepto
Dourmashkin, Peter
Frebel, Anna
Tomasik, Michelle
Vuletic, Vladan
Date Added:
09/01/2016
Classical Mechanics II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This undergraduate course is a broad, theoretical treatment of classical mechanics, useful in its own right for treating complex dynamical problems, but essential to understanding the foundations of quantum mechanics and statistical physics.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Evans, Matthew
Date Added:
01/01/2017
Classical Mechanics III
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers Lagrangian and Hamiltonian mechanics, systems with constraints, rigid body dynamics, vibrations, central forces, Hamilton-Jacobi theory, action-angle variables, perturbation theory, and continuous systems. It provides an introduction to ideal and viscous fluid mechanics, including turbulence, as well as an introduction to nonlinear dynamics, including chaos.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Stewart, Iain
Date Added:
09/01/2014
Colour Theory: Understanding and Working with Colour
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Short Description:
NewParaColour theory covers a long history from antiquity to modern times. It includes academic and scientific investigations into how we see and understand colour. It also includes practical applications for using colour in creative work.NewParaThis learning resource covers the history of colour theory, how we see colour, and how to use colour systems to mix colour and create colour relationships.NewParaAlso included in this resource are quizzes to test your knowledge, and practical learning activities to guide users in applications of colour theory for art and design. It's useful for anyone working with colour in creative and scientific fields.

Word Count: 51635

(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Subject:
Arts and Humanities
Career and Technical Education
Graphic Arts
Graphic Design
Physical Science
Physics
Social Science
Sociology
Visual Arts
Material Type:
Textbook
Provider:
RMIT
Date Added:
02/23/2023
Conceptual Physics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

For a semester-length course, all seven chapters can be covered. For a shorter course, the book is designed so that chapters 1, 2, and 5 are the only ones that are required for continuity; any of the others can be included or omitted at the instructor’s discretion, with the only constraint being that chapter 6 requires chapter 4.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Light and Matter
Provider Set:
Light and Matter Books
Author:
Benjamin Crowell, Fullerton College
Date Added:
01/01/2006