Updating search results...

Search Resources

23 Results

View
Selected filters:
  • WY.SCI.HS.LS1.2 - Develop and use a model to illustrate the hierarchical organization of...
Active and Passive Transport: Red Rover Send Particles Over
Read the Fine Print
Educational Use
Rating
0.0 stars

Students compare and contrast passive and active transport by playing a game to model this phenomenon. Movement through cell membranes is also modeled, as well as the structure and movement typical of the fluid mosaic model of the cell membrane. Concentration gradient, sizes, shapes and polarity of molecules determine the method of movement through cell membranes. This activity is associated with the Test your Mettle phase of the legacy cycle.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Melinda M. Higgins
Date Added:
09/18/2014
Cell Membrane Structure and Function
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the different structures that comprise cell membranes, fulfilling part of the Research and Revise stages of the legacy cycle. They view online animations of cell membrane dynamics (links provided). Then they observe three teacher demonstrations that illustrate diffusion and osmosis concepts, as well as the effect of movement through a semi-permeable membrane using Lugol's solution.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Date Added:
09/18/2014
Cells Inquiry Activity
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This is an inquiry activity that uses either pictures of cells or microscopes and slides to get students thinking about cell structure and function.  You could look at prokaryotic vs eukaryotic cells, plant vs animal or different types of cells found in one organism.  The objective is to have students begin to make the connection between sructure and function in cells.

Subject:
Biology
Material Type:
Lesson Plan
Author:
Deb Henry
Date Added:
06/07/2018
Diffusion, Osmosis and Active Transport
Read the Fine Print
Rating
0.0 stars

Movement of ions in and out of cells is crucial to maintaining homeostasis within the body and ensuring that biological functions run properly. The natural movement of molecules due to collisions is called diffusion. Several factors affect diffusion rate: concentration, surface area, and molecular pumps. This activity demonstrates diffusion, osmosis, and active transport through 12 interactive models.

Subject:
Life Science
Physical Science
Physics
Material Type:
Data Set
Lecture Notes
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Does My Model Valve Stack up to the Real Thing?
Read the Fine Print
Educational Use
Rating
0.0 stars

Following the steps of the iterative engineering design process, student teams use what they learned in the previous lessons and activity in this unit to research and choose materials for their model heart valves and test those materials to compare their properties to known properties of real heart valve tissues. Once testing is complete, they choose final materials and design and construct prototype valve models, then test them and evaluate their data. Based on their evaluations, students consider how they might redesign their models for improvement and then change some aspect of their models and retest aiming to design optimal heart valve models as solutions to the unit's overarching design challenge. They conclude by presenting for client review, in both verbal and written portfolio/report formats, summaries and descriptions of their final products with supporting data.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Drug Delivery Innovation Project
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

In this capstone course, students will use new and previous knowledge about drug delivery and biopharmaceutics, to design an innovation. Throughout the course students will engage in learning opportunities related to real-world scenarios in drug delivery, gain a better understanding of the anatomy and physiology related to drug delivery, and participate in a self-directed project to solve a fictitious problem. This learning tool will guide students through the process of understanding real-world applications of drug delivery and how drug delivery is applied to treating infectious diseases. DDF’s innovation project is aligned with NGSS and Common Core standards in math and ELA core curriculum subject areas. The learning activities, final project, and mid-unit assessments are provided to the teacher and students in the form of eLearning readings, quizzes, interactive tools, student response sheets, and presentation outlines. Students using this module should find success in self-directed learning, though they may use additional resources in the community, the guidance of teachers, the advice of scientists or biomedical professionals at DDF, or the knowledge presented in scientific literature to help them achieve their goal; though this module should provide most of the tools they will need for guidance. For more information on in-person learning experiences, please contact our DDF eLearning Project Manager, Lindsay Malcolm: lmalcolm@tsrlinc.com

Subject:
Anatomy/Physiology
Life Science
Ratios and Proportions
Reading Informational Text
Reading Literature
Material Type:
Lesson Plan
Author:
Lindsay Malcolm
Date Added:
01/23/2019
Elasticity & Young's Modulus for Tissue Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

As part of the engineering design process to create testable model heart valves, students learn about the forces at play in the human body to open and close aortic valves. They learn about blood flow forces, elasticity, stress, strain, valve structure and tissue properties, and Young's modulus, including laminar and oscillatory flow, stress vs. strain relationship and how to calculate Young's modulus. They complete some practice problems that use the equations learned in the lesson mathematical functions that relate to the functioning of the human heart. With this understanding, students are ready for the associated activity, during which they research and test materials and incorporate the most suitable to design, build and test their own prototype model heart valves.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Floppy Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with an engineering challenge that asks them to develop a material and model that can be used to test the properties of aortic valves without using real specimens. Developing material that is similar to human heart valves makes testing easier for biomedical engineers because they can test new devices or ideas on the model valve instead of real heart valves, which can be difficult to obtain for research. To meet the challenge, students are presented with a variety of background information, are asked to research the topic to learn more specific information pertaining to the challenge, and design and build a (prototype) product. After students test their products and make modifications as needed, they convey background and product information in the form of portfolios and presentations to the potential buyer.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Fuel Cell Car: Use Water for Energy! A lesson in Cell Respiration, Energy Flow, Photosynthesis
Unrestricted Use
Public Domain
Rating
0.0 stars

This lesson will expose Biology students to mechanisms of energy by using a wind turbine demonstration and a fuel cell car student lab.  Fuel Cell kits will need to be purchased for this activity.  

Subject:
Biology
Material Type:
Activity/Lab
Author:
Integrated Nanosystems Development Institute (INDI)
Date Added:
07/13/2021
Got Lactose? Investigating How Enzymes Function
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

After studying the basics of enzyme function, students will be exposed to the history and evolution of lactose intolerance/lactase persistence. Both whole group and individual activities will ask students to interact with the concept. They will conduct a lab to understand the role of enzymes in lactose digestion and communicate their knowledge by creating a public health poster.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Material Type:
Activity/Lab
Assessment
Data Set
Lesson
Lesson Plan
Student Guide
Date Added:
04/04/2019
Life on Mars?
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson is designed to introduce the concept of nanotechnology as part of the Biology Characteristics of Life coursework.  The lesson focuses on students researching the timeline of life on Earth and creating a timeline for life on Mars including exploration with nanotechnology.

Subject:
Biology
Material Type:
Activity/Lab
Author:
Integrated Nanosystems Development Institute (INDI)
Date Added:
06/23/2021
Living, Non-living or Dead?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use specimens prepared by the teacher and try to decide if each one is living, non-living or dead.  This may be done as inquiry prior to instruction or as reinforcement.

Subject:
Life Science
Material Type:
Lesson Plan
Author:
Deb Henry
Date Added:
06/20/2018
Magic Sand
Unrestricted Use
CC BY
Rating
0.0 stars

Students will investigate how material on the macro-scale are affected by its structure on the nano-scale

Subject:
Biology
Material Type:
Activity/Lab
Author:
Integrated Nanosystems Development Institute (INDI)
Date Added:
07/13/2021
Ocean Acidification: A Systems Approach to a Global Problem
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this curriculum module, students in high school life science, marine science, and/or chemistry courses act as interdisciplinary scientists and delegates to investigate how the changing carbon cycle will affect the oceans along with their integral populations.

The oceans cover 70 percent of the planet and play a critical role in regulating atmospheric carbon dioxide through the interaction of physical, chemical, and biological processes. As a result of anthropogenic activity, a doubling of the atmospheric CO2 concentration (to 760 ppm) is expected to occur by the end of this century. A quarter of the total CO2 emitted has already been absorbed by the surface oceans, changing the marine carbonate system, resulting in a decrease in pH, a change in carbonate-ion concentrations, and a change in the speciation of macro and micronutrients. The shift in the carbonate system is already drastically affecting biological processes in the oceans and is predicted to have major consequences on carbon export to the deep ocean with reverberating effects on atmospheric CO2. Put in simple terms, ocean acidification is a complex phenomenon with complex consequences. Understanding complexity and the impact of ocean acidification requires systems thinking – both in research and in education. Scientific advancement will help us better understand the problem and devise more effective solutions, but executing these solutions will require widespread public participation to mitigate this global problem.

Through these lessons, students closely model what is occurring in laboratories worldwide and at Institute for Systems Biology (ISB) through Monica Orellana’s research to analyze the effect CO2 has on ocean chemistry, ecosystems and human societies. Students experiment, analyze public data, and prepare for a mock summit to address concerns. Student groups represent key “interest groups” and design two experiments to observe the effects of CO2 on seawater pH, diatom growth, algal blooms, nutrient availability, and/or shell dissolution.

Subject:
Atmospheric Science
Physical Science
Material Type:
Module
Author:
Aisha McKee
Alexis Boleda
Alexis Valauri-Orton
Allison Lee Cusick
Anna Farrell-Sherman
Baliga Lab
Barbara Steffens
Claudia Ludwig
Danny Thomson
Dexter Chapin
Dina Kovarik
Donald Cho
Eric Grewal
Eric Muhs
Helen Ippolito
Holly Kuestner
Institute for Systems Biology
Jeannine Sieler
Jennifer Duncan-Taylor
Jia Hao Xu
JoAnn Chrisman
Jocelyn Lee
Kedus Getaneh
Kevin Baker
Mari Knutson Herbert
Megan DeVault
Meredith Carlson
Michael Walker
Monica V. Orellana
Nitin S. Baliga
Olachi Oleru
Raisah Vestindottir
Steven Do
Systems Education Experiences
William Harvey
Zac Simon
Date Added:
03/09/2023
Panoptes and the Bionic Eye
Read the Fine Print
Educational Use
Rating
0.0 stars

Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Gisselle Cunningham
Michael Trumpis
Shingi Middelmann
Date Added:
10/14/2015
Patterns Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Our Patterns Biology development team of teacher leaders has been working hard through the spring and summer of 2020 to develop distance learning versions of the Patterns Biology units. Between March and May they released Distance Learning versions of units 4 and 5, as well as paper packets that can be printed for students who do not have access to technology at home. In preparation for fall of the 2020-21 school year, the team has just published Distance Learning versions of units 1 and 2 (see below links for each unit's page). Our Distance Learning units can be used in either a fully online or hybrid school model. A Distance Learning version of Unit 3 will be released by the end of September.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Portland STEM Partnership
Date Added:
09/03/2020
The Pompe Predicament - Lesson One
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A first person story is presented to the students to hook their interest in the disease. Using a jigsaw approach, students will learn about the fundamentals of Pompe disease and share information during a whole class discussion.

The Pompe Predicament was developed as a part of Biomedical Explorations: Bench to Bedside which was supported by the National Center for Research Resources and the Division of Program Coordination, Planning, and Strategic Initiatives of the National Institutes of Health through Grant Number R25RR023294. Additional support provided by the University of Florida (UF) and the UF Center for Precollegiate Education and Training.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Primary Source
Simulation
Teaching/Learning Strategy
Unit of Study
Date Added:
06/24/2015
STEM Capstone & Career Pathways Project
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This learning tool will guide students through the process of understanding real-world applications of drug delivery and how drug delivery is applied to treating infectious diseases. Students using this module should find success in self-directed learning, though they may use additional resources in the community, the guidance of teachers, the advice of scientists or biomedical professionals at DDF, or the knowledge presented in scientific literature to help them achieve their goal; though this module should provide most of the tools they will need for guidance.

Subject:
Anatomy/Physiology
Applied Science
Biology
Chemistry
English Language Arts
Health, Medicine and Nursing
Life Science
Physical Science
Speaking and Listening
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Lesson Plan
Module
Student Guide
Teaching/Learning Strategy
Date Added:
04/01/2019