Updating search results...

Search Resources

97 Results

View
Selected filters:
  • WY.SCI.3.5.ETS1.3 - Plan and carry out fair tests in which variables are controlled and fa...
Design and Fly a Kite
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to use wind energy to combat gravity and create lift by creating their own tetrahedral kites capable of flying. They explore different tetrahedron kite designs, learning that the geometry of the tetrahedron shape lends itself well to kites and wings because of its advantageous strength-to-weight ratio. Then they design their own kites using drinking straws, string, lightweight paper/plastic and glue/tape. Student teams experience the full engineering design cycle as if they are aeronautical engineers—they determine the project constraints, research the problem, brainstorm ideas, select a promising design and build a prototype; then they test and redesign to achieve a successful flying kite. Pre/post quizzes and a worksheet are provided.

Subject:
Geometry
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joshua T. Claypool
Date Added:
02/17/2017
Designing for the Weather
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Design challenge: Strong, light structures are necessary in constructing buildings (especially in areas with extreme weather) as well as air and space craft.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/06/2022
The Dirty Water Project
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate different methods (aeration and filtering) for removing pollutants from water. They will design and build their own water filters.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
10/14/2015
Do Different Colors Absorb Heat Better?
Read the Fine Print
Educational Use
Rating
0.0 stars

This is a STEM activity to learn how different colors absorb light better than others. Vocabulary and investigating questions are included to facilitate discussion, and a rubric is provided for assessment.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Teach Engineering
University of Colorado Boulder
Date Added:
07/25/2022
Double-O STEM (Educator Guide)
Unrestricted Use
CC BY
Rating
0.0 stars

The "Double-O-STEM" (educator guide) curriculum consists of STEM problem-solving activities. The curriculum is designed around projects that empower learners to apply STEM to creatively problem-solve community issues. These include designing bike lanes, community gardens, and other exciting STEM problems.

The activities are designed for both librarians and STEM educators. The curriculum is especially aligned with the Next Generation Science Standards (NGSS (engineering; grades 3-5) and American Association of School Librarians (AASL) standards.

Please note the student version can be found using the following link:
https://www.oercommons.org/courses/double-o-stem-learner-guide

Subject:
Applied Science
Engineering
Material Type:
Lesson
Author:
Andrew A. Tawfik
Craig Shepherd
Jaclyn Gish-lieberman
Laura Armstrong
Linda Payne
Date Added:
09/23/2021
Double-O STEM (Learner Guide)
Unrestricted Use
CC BY
Rating
0.0 stars

The "Double-O-STEM" (learner guide) curriculum consists of STEM problem-solving activities. The curriculum is designed around projects that empower learners to apply STEM to creatively problem-solve community issues. These include designing bike lanes, community gardens, and other exciting STEM problems.

The activities are designed for both librarians and STEM educators. The curriculum is especially aligned with the Next Generation Science Standards (NGSS (engineering; grades 3-5) and American Association of School Librarians (AASL) standards.

Please note the educator guide can be found using the following link: https://www.oercommons.org/courses/double-o-stem-educator-guide

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Author:
Andrew A. Tawfik
Craig Shepherd
Jaclyn Gish-lieberman
Laura Armstrong
Linda Payne
Date Added:
09/23/2021
Earthquake in the Classroom
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers construct buildings to withstand damage from earthquakes by building their own structures with toothpicks and marshmallows. Students test how earthquake-proof their buildings are by testing them on an earthquake simulated in a pan of Jell-O(TM).

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Engineering Derby: Tool Ingenuity
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams are challenged to navigate a table tennis ball through a timed obstacle course using only the provided unconventional “tools.” Teams act as engineers by working through the steps of the engineering design process to complete the overall task with each group member responsible to accomplish one of the obstacle course challenges. Inspired by the engineers who helped the Apollo 13 astronauts through critical problems in space, students must be innovative with the provided supplies to use them as tools to move the ball through the obstacles as swiftly as possible. Groups are encouraged to communicate with each other to share vital information. The course and tool choices are easily customizable for varied age groups and/or difficulty levels. Pre/post assessment handouts, competition rules and judging rubric are provided.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Andrew Palermo
Date Added:
02/07/2017
Engineering a Mountain Rescue Litter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build small-sized prototypes of mountain rescue litters rescue baskets for use in hard-to-get-to places, such as mountainous terrain to evacuate an injured person (modeled by a potato) from the backcountry. Groups design their litters within constraints: they must be stable, lightweight, low-cost, portable and quick to assemble. Students demonstrate their designs in a timed test during which they assemble the litter and transport the rescued person (potato) over a set distance.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chelsea Heveran
Date Added:
10/14/2015
Engineering and the Human Body
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit covers the broad spectrum of topics that make-up our very amazing human body. Students are introduced to the space environment and learn the major differences between the environment on Earth and that of outer space. The engineering challenges that arise because of these discrepancies are also discussed. Then, students dive into the different components that make up the human body: muscles, bones and joints, the digestive and circulatory systems, the nervous and endocrine systems, the urinary system, the respiratory system, and finally the immune system. Students learn about the different types of muscles in the human body and the effects of microgravity on muscles. Also, they learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. In the lessons on the digestive, circulatory, nervous and endocrine systems, students learn how these vital system work and the challenges faced by astronauts whose systems are impacted by spaceflight. And lastly, advances in engineering technology are discussed through the lessons on the urinary, respiratory and immune systems while students learn how these systems work with all the other body components to help keep the human body healthy.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Explore the Salish Sea - Unit 1: Ocean Motion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students wonder about the physical drivers of ocean movement, explore density differences, and take a look at some tiny creatures who struggle to keep their place in the water column in the midst of all that ocean motion.
Each unit of the Explore the Salish Sea curriculum contains a detailed unit plan, a slideshow, student journal, and assessments. All elements are adaptable and can be tailored to your local community.

Subject:
Biology
Career and Technical Education
Environmental Studies
Life Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
Pacific Education Institute
SeaDoc Society
UC Davis Veterinary Medicine
Junior SeaDoctors
Date Added:
12/19/2022
Explore the Salish Sea - Unit 5: Ocean Tech
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The moon is more explored than the ocean, and that includes the Salish Sea. Where it is inconvenient or even impossible for people to go, we can engineer technology to go there for us, like the Mars Rovers, space probes, automatic unmanned vehicles, drones, and in this unit, remotely operated vehicles (ROV’s). Ocean Tech revisits the engineering process, but this time it requires physical, mechanical, and electrical engineers working together as a team to achieve a student-driven mission.

Chapter 5, Life in the Deep: The Subtidal World, is our first look into the amazing life forms that live their whole lives underwater. Is there access to the subtidal world near your school? If you can get to one (even if it is a pond or a pool), your students’ engineering efforts will find their reward. What mystery or problem will your students explore with their own ROV? Dive in!

Subject:
Applied Science
Environmental Science
Life Science
Physical Science
Space Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
Pacific Education Institute
SeaDoc Society
UC Davis Veterinary Medicine
Junior SeaDoctors
Date Added:
04/25/2023
Form vs. Function
Read the Fine Print
Educational Use
Rating
0.0 stars

Students model and design the sound environment for a room. They analyze the sound performance of different materials that represent wallpaper, thick curtains, and sound-absorbing panels. Then, referring to the results of their analysis, they design another room based on certain specifications, and test their designs.

Subject:
Applied Science
Architecture and Design
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
10/14/2015
The Good, the Bad and the Electromagnet
Read the Fine Print
Educational Use
Rating
0.0 stars

Using plastic straws, wire, batteries and iron nails, student teams build and test two versions of electromagnets one with and one without an iron nail at its core. They test each magnet's ability pick up loose staples, which reveals the importance of an iron core to the magnet's strength. Students also learn about the prevalence and importance of electromagnets in their everyday lives.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Martinez
James Cooper Patricio Rocha
Mandek Richardson
Tapas K. Das
Date Added:
09/18/2014
Hare and Snail Challenges
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engage in the second design challenge of the unit, which is an extension of the maze challenge they solved in the first lesson/activity of this unit. Students extend the ideas learned in the maze challenge with a focus more on the robot design. Gears are a very important part of any machine, particularly when it has a power source such as engine or motor. Specifically, students learn how to design the gear train from the LEGO MINDSTORMS(TM) NXT servomotor to the wheel to make the LEGO taskbot go faster or slower. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Sachin Nair
Satish S. Nair
Date Added:
09/18/2014
Hot or Not
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the purpose of a fever in the body's immune system and how it protects the body against germs. The students continue to explore temperature by creating a model thermometer and completing a temperature conversion worksheet. They come to see how engineers are involved in designing helpful medical instruments such as thermometers.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Janet Yowell
Jesse Ascunce
Malinda Schaefer Zarske
Teresa Ellis
Date Added:
09/18/2014
How Cold Can You Go?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore materials engineering by modifying the material properties of water. Specifically, they use salt to lower the freezing point of water and test it by making ice cream. Using either a simple thermometer or a mechatronic temperature sensor, students learn about the lower temperature limit at which liquid water can exist such that even if placed in contact with a material much colder than 0 degrees Celsius, liquid water does not get colder than 0 °C. This provides students with an example of how materials can be modified (engineered) to change their equilibrium properties. They observe that when mixed with salt, liquid water's lower temperature limit can be dropped. Using salt-ice mixtures to cool the ice cream mixes to temperatures lower than 0 °C works better than ice alone.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Donna Johnson
Elina Mamasheva
Leonarda Huertas
Ryan Caeti
Ursula Koniges
Date Added:
09/18/2014
How Do You Make a Program Wait?
Read the Fine Print
Educational Use
Rating
0.0 stars

Building on the programming basics learned so far in the unit, students next learn how to program using sensors rather than by specifying exact durations. They start with an examination of algorithms and move to an understanding of conditional commands (until, then), which require the use of wait blocks. Working with the LEGO MINDSTORMS(TM) NXT robots and software, they learn about wait blocks and how to use them in conjunction with move blocks set with unlimited duration. To help with comprehension and prepare them for the associated activity programming challenges, volunteer students act out a maze demo and student groups conclude by programming LEGO robots to navigate a simple maze using wait block programming. A PowerPoint® presentation, a worksheet and pre/post quizzes are provided.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Riaz Helfer
Satish S. Nair
Date Added:
09/18/2014