Updating search results...

Search Resources

13 Results

View
Selected filters:
  • NGSS.HS.LS4.4 - Construct an explanation based on evidence for how natural selection l...
Community Science (for Secondary Educators)
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this course participants will…Understand how local phenomena interact with the Next Generation Science Standards, climate change, ecosystems, and people in a community.Experience how local phenomena and field investigations can build scientific understanding.

Subject:
Education
Environmental Science
Life Science
Physical Science
Social Science
Material Type:
Activity/Lab
Full Course
Lesson Plan
Teaching/Learning Strategy
Author:
Brad Street
Date Added:
06/22/2021
Evolution Module
Unrestricted Use
CC BY
Rating
0.0 stars

This Google Folder leads to an online module that is designed for students to learn concepts of evolution, descent with modification, natural selection, and more. There is both a student guide and a teacher's guide to help navigate through the module. Google forms are also available to support learning throughout the module. Interactive activities and simulations are also included for students to enjoy and learn from. 

Subject:
Biology
Material Type:
Activity/Lab
Lesson
Module
Author:
Bobbi Herrera
Date Added:
09/15/2020
Evolution and Adaptations
Read the Fine Print
Rating
0.0 stars

In common experience, the term "adapting" usually refers to changes during an organism's lifetime. In contrast, evolutionary biologists use the term "adaptation" to refer to a heritable trait that increases fitness. To help students reconcile these different concepts, this activity introduces the concept of phenotypic plasticity (the ability of an organism to adapt to different environments within its lifetime). Questions guide students in analyzing how the balance between the advantages and disadvantages of a characteristic (e.g. an animal's color) can vary in different circumstances, how phenotypic plasticity can be a heritable trait that can optimize fitness in a variable environment, and how natural selection can influence the amount of phenotypic plasticity in a population. This activity is designed to help high school students meet the Next Generation Science Standards and the Common Core State Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Exploring Populations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Immersion Unit provides a coherent series of lessons designed to guide students in developing deep conceptual understanding that is aligned with the standards, key science concepts, and essential features of classroom inquiry (as defined by the National Science Education Standards).  Unit Overarching Concepts Populations of living organisms change or stay the same over time as a result of the interactions between the genetic variations that are expressed by the individuals in the populations and the environment in which the population lives. Science knowledge advances through inquiry. Unit Supporting Concepts Individual organisms with certain variations of traits (adaptations) are more likely than others to survive and reproduce successfully.When environmental conditions change it can affect the survival of both individual organisms and entire species. Natural selection determines the differential survival of groups of organisms. A small advantage in escaping a predator, resisting a drug, etc. can lead to the spread of a trait in a modest number of generations. Mutations are a source of variation in an individual’s genotype, and it can result in a change in phenotype––good or bad. Scientific progress is made by asking meaningful questions and conducting careful investigations, using appropriate tools and technology to perform tests, collect data, analyze relationships, and display data. No matter how well one scientific explanation fits observations, a new explanation might fit them just as well or better, or might fit a wider range of observations. In science, the testing, revising, and occasional discarding of explanations, new and old, never ends. This unit was developed through the large Math and Science Partnership project called System-wide Change for All Learners and Educators (SCALE), involving a collaboration among Los Angeles School District educators, California State University science and education faculty, and UW-Madison SCALE staff.

Subject:
Biology
Life Science
Mathematics
Material Type:
Activity/Lab
Lesson
Lesson Plan
Teaching/Learning Strategy
Unit of Study
Date Added:
05/25/2023
Generalized Artificial Selection Fast Plants Schedule
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This fill-in-the-blank timeline is a planning tool for teachers to use when figuring out when to begin the steps associated with conducting a two-generation artificial selection experiment using Fast Plants. Teachers preparing for any selection experiment will find this timeline helpful, including those planning for the AP Biology Lab 1 of Big Idea 1: Evolution, Artificial Selection.

Subject:
Genetics
Life Science
Material Type:
Lesson
Teaching/Learning Strategy
Provider:
Wisconsin Fast Plants Program
Author:
Hedi Baxter Lauffer
Date Added:
05/25/2023
Got Lactose? Investigating How Enzymes Function
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

After studying the basics of enzyme function, students will be exposed to the history and evolution of lactose intolerance/lactase persistence. Both whole group and individual activities will ask students to interact with the concept. They will conduct a lab to understand the role of enzymes in lactose digestion and communicate their knowledge by creating a public health poster.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Material Type:
Activity/Lab
Assessment
Data Set
Lesson
Lesson Plan
Student Guide
Date Added:
05/08/2021
Got Lactose? Investigating How Enzymes Function
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

After studying the basics of enzyme function, students will be exposed to the history and evolution of lactose intolerance/lactase persistence. Both whole group and individual activities will ask students to interact with the concept. They will conduct a lab to understand the role of enzymes in lactose digestion and communicate their knowledge by creating a public health poster.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Material Type:
Activity/Lab
Assessment
Data Set
Lesson
Lesson Plan
Student Guide
Date Added:
04/04/2019
High School Biology Investigating Artificial Selection Lesson Plan
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson plan, from the University of Wisconsin-Madisons Wisconsin Fast Plants, is for a high school biology investigation into evolution and artificial selection while using Fast Plants polycot seeds. The lesson plan describes student science performance for in-classroom learning as well as distance learning, and assessment for student learning. Additionally, this resource includes a sample calendar to demonstrate how educators can implement this investigation into their classroom. This resource is related to Evidence of Natural Selection Activities and Investigating Selection with New Polycots Fast Plants, which are available to view separately.

Subject:
Biology
Life Science
Material Type:
Lesson
Lesson Plan
Teaching/Learning Strategy
Unit of Study
Provider:
University of Wisconsin - Madison;Wisconsin Fast Plants Program
Author:
Hedi Baxter Lauffer
Date Added:
05/25/2023
Mutation Breeding
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

It is well known that mutation is the ultimate source of variation. Without adequate variation, plant breeding is impossible. To start a breeding program, the breeder must find the appropriate genotype (containing the desired genes) from existing variation, or create the variation if it is not found in nature. Mutagenesis is the process by which new alleles are created. The purpose of this chapter is to discuss mutagenesis as both a technique and a breeding method. The newly created mutants may be used as parents in future breeding programs, in which case mutagenesis is a breeding technique as a source of variation. However, an induced mutant can be systematically processed through conventional breeding steps to be released as a cultivar, hence making it a breeding method (mutation breeding). Mutations arise spontaneously in nature and are pivotal in natural evolution.

Subject:
Agriculture
Career and Technical Education
Genetics
Life Science
Material Type:
Assessment
Date Added:
08/27/2019
Ocean Acidification: A Systems Approach to a Global Problem
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this curriculum module, students in high school life science, marine science, and/or chemistry courses act as interdisciplinary scientists and delegates to investigate how the changing carbon cycle will affect the oceans along with their integral populations.

The oceans cover 70 percent of the planet and play a critical role in regulating atmospheric carbon dioxide through the interaction of physical, chemical, and biological processes. As a result of anthropogenic activity, a doubling of the atmospheric CO2 concentration (to 760 ppm) is expected to occur by the end of this century. A quarter of the total CO2 emitted has already been absorbed by the surface oceans, changing the marine carbonate system, resulting in a decrease in pH, a change in carbonate-ion concentrations, and a change in the speciation of macro and micronutrients. The shift in the carbonate system is already drastically affecting biological processes in the oceans and is predicted to have major consequences on carbon export to the deep ocean with reverberating effects on atmospheric CO2. Put in simple terms, ocean acidification is a complex phenomenon with complex consequences. Understanding complexity and the impact of ocean acidification requires systems thinking – both in research and in education. Scientific advancement will help us better understand the problem and devise more effective solutions, but executing these solutions will require widespread public participation to mitigate this global problem.

Through these lessons, students closely model what is occurring in laboratories worldwide and at Institute for Systems Biology (ISB) through Monica Orellana’s research to analyze the effect CO2 has on ocean chemistry, ecosystems and human societies. Students experiment, analyze public data, and prepare for a mock summit to address concerns. Student groups represent key “interest groups” and design two experiments to observe the effects of CO2 on seawater pH, diatom growth, algal blooms, nutrient availability, and/or shell dissolution.

Subject:
Atmospheric Science
Physical Science
Material Type:
Module
Author:
Aisha McKee
Alexis Boleda
Alexis Valauri-Orton
Allison Lee Cusick
Anna Farrell-Sherman
Baliga Lab
Barbara Steffens
Claudia Ludwig
Danny Thomson
Dexter Chapin
Dina Kovarik
Donald Cho
Eric Grewal
Eric Muhs
Helen Ippolito
Holly Kuestner
Institute for Systems Biology
Jeannine Sieler
Jennifer Duncan-Taylor
Jia Hao Xu
JoAnn Chrisman
Jocelyn Lee
Kedus Getaneh
Kevin Baker
Mari Knutson Herbert
Megan DeVault
Meredith Carlson
Michael Walker
Monica V. Orellana
Nitin S. Baliga
Olachi Oleru
Raisah Vestindottir
Steven Do
Systems Education Experiences
William Harvey
Zac Simon
Date Added:
03/09/2023
Our Invisible Forest: What's in a Drop of Seawater?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Take a breath — where does the oxygen you inhaled come from? In our changing world, will we always have enough oxygen? What is in water that supports life? What is known? How do we know what we know about our vast oceans? These are just a few of the driving questions explored in this interactive STEAM high school curriculum module.

Students in marine science, environmental science, physics, chemistry, biology, integrated science, biotechnology and/or STEAM courses can use this curriculum module in order to use real-world, big data to investigate how our “invisible forest” influences ocean and Earth systems. Students build an art project to represent their new understanding and share this with the broader community.

This 4-week set of lessons is based on the oceanographic research of Dr. Anne Thompson of Portland State University in Oregon, which focuses on the abundant ocean phytoplankton Prochlorococcus. These interdisciplinary STEAM lessons were inspired by Dr. Thompson’s lab and fieldwork as well as many beautiful visualizations of Prochlorococcus, the ocean, and Earth. Students learn about the impact and importance of Prochlorococcus as the smallest and most abundant photosynthetic organism on our planet. Through the lessons, students act as both scientists and artists as they explore where breathable oxygen comes from and consider how to communicate the importance of tiny cells to human survival.

This module is written as a phenomenon-based, Next Generation Science Standards (NGSS) three-dimensional learning unit. Each of the lessons below also has an integrated, optional Project-Based Learning component that guides students as they complete the PBL process. Students learn to model a system and also design and evaluate questions to investigate phenomena. Students ultimately learn what is in a drop of ocean water and showcase how their drop contributes to our health and the stability and dynamics of global systems.

Subject:
Applied Science
Environmental Science
Material Type:
Module
Author:
Amanda Cope
Anne W. Thompson
Baliga Lab
Barbara Steffens
Claudia Ludwig
Emily Borden
Institute for Systems Biology
Jeannine Sieler
Linnea Stavney
Mari Knutson Herbert
Mark Buchli
Michael Walker
Nitin S. Baliga
Portland State University
Uzma Khalil
Date Added:
03/09/2023
Patterns Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Our Patterns Biology development team of teacher leaders has been working hard through the spring and summer of 2020 to develop distance learning versions of the Patterns Biology units. Between March and May they released Distance Learning versions of units 4 and 5, as well as paper packets that can be printed for students who do not have access to technology at home. In preparation for fall of the 2020-21 school year, the team has just published Distance Learning versions of units 1 and 2 (see below links for each unit's page). Our Distance Learning units can be used in either a fully online or hybrid school model. A Distance Learning version of Unit 3 will be released by the end of September.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Portland STEM Partnership
Date Added:
09/03/2020