Updating search results...

Search Resources

12 Results

View
Selected filters:
  • NGSS.HS.PS1.2 - Construct and revise an explanation for the outcome of a simple chemic...
Carbon Travels - Then and Now
Read the Fine Print
Educational Use
Rating
0.0 stars

Students play the role of carbon atoms to learn about the carbon cycle and how it is changing. Students create two carbon cycle diagramsâvisual models of the cycle before and after the Industrial Revolution. They reflect on the game and how scientists believe humans are impacting this critical Earth system.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Bay Area E-STEM Institute
Date Added:
08/01/2022
Categories of the Periodic Table
Unrestricted Use
CC BY
Rating
0.0 stars

In this activity, students will learn the location of the following categories on the periodic table while creating their own version including a key.Categories Included:Alkali MetalsAlkaline Earth MetalsHalogensNoble GasesMetalsNonmetalsMetalloidsTransition MetalsInner Transition MetalsThe Soft Chalk Activity includes interactive checks throughout and includes information on valence electrons and determining groups and periods for elements.This activity also includes a formative assessment that students could take when they are done.  

Subject:
Chemistry
Physical Science
Material Type:
Homework/Assignment
Interactive
Author:
Julie Buerman
Date Added:
07/28/2020
Conceptual Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

Conceptual Chemistry is a year-long course based on CK-12 OER instructional material and supplemented with limited commercially-available materials. The course is project-based, argument-driven inquiry. Each quarter begins with presentation of an intriguing phenomenon, followed by an essential question about the phenomenon, and a project centered on answering that essential question. Throughout the quarter, students conduct research and investigations to answer portions of the question. Each unit has a student "Task" at the end that serves as an assessment of the unit's concepts. At the end of each quarter, students assemble all of the unit tasks and synthesize a personal final project that answers the essential question in a personal context chosen by the student.

Subject:
Physical Science
Material Type:
Full Course
Date Added:
07/02/2018
High School Integrated Physics and Chemistry Course
Unrestricted Use
CC BY
Rating
0.0 stars

The High School Integrated Conceptual Science Program (ICSP) is a NGSS-aligned curriculum that utilizes the conceptual progressions model for bundling of the NGSS, High School Conceptual Model Course 1 and strategies from Ambitious Science Teaching (AST) to focus on teaching practices needed to engage students in science discourse and learning. Course 1 is the High School Integrated Physics and Chemsitry Course.   The goal of these units is to encourage students to continue in STEM by providing engaging and aligned curriculum. The focus of this year long course is on the first year of high school (freshman).  While the course is designed to be taught as a collection of the units, each unit could be taught as a separate unit in a science course.  A video about the new course shared its unique approach to learning and teaching. Wenatchee School District, one of the participating districts, wanted a way to share the program with the community. https://youtu.be/9AGk19YUi2oCourse 1 of the ICSP development was funded by Northwest Earth and Space Sciences Pipeline (NESSP) which is funded through the NASA Science Mission Directorate and housed with Washington NASA Space Grant Consortium at the University of Washington.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Assessment
Full Course
Lesson
Module
Unit of Study
Author:
Carissa Haug
MECHELLE LALANNE
Date Added:
06/01/2020
Hydrogen-Oxygen Reaction Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab exercise exposes students to a potentially new alternative energy source hydrogen gas. Student teams are given a hydrogen generator and an oxygen generator. They balance the chemical equation for the combustion of hydrogen gas in the presence of oxygen. Then they analyze what the equation really means. Two hypotheses are given, based on what one might predict upon analyzing the chemical equation. Once students have thought about the process, they are walked through the experiment and shown how to collect the gas in different ratios. By trial and error, students determine the ideal combustion ratio. For both volume of explosion and kick generated by explosion, they qualitatively record results on a 0-4 scale. Then, students evaluate their collected results to see if the hypotheses were correct and how their results match the theoretical equation. Students learn that while hydrogen will most commonly be used for fuel cells (no combustion situation), it has been used in rocket engines (for which a tremendous combustion occurs).

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Herring
Stephen Dent
Date Added:
09/18/2014
Jell-O: More Than Meets the Eye
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students are tasked with designing their own experiment to discover why you cannot add fresh pineapple to Jell-O. After analyzing their results, they will construct a CER that will be used to assess their understanding of the concepts.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Assessment
Date Added:
04/26/2021
NCESD Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

The Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry is a three dimensional course based on the Conceptual Progression Model of the Next Generation Science Standards. It is designed to be used as part of a three course program that addresses all high school science performance expectations. Course 1 is designed for ninth grade students.
This resource includes the teacher materials, supporting documents, and short videos to support teachers in using the materials.
The Courses were designed using the Ambitious Science Teaching (AST) framework. It is strongly encouraged that before using these materials that you be familiar with AST. We suggest that you watch the AST Overview short video found here: https://datapuzzles.org/ambitious-science-teaching and explore this Google Slide deck that contains many resources designed to further your understanding of AST: https://docs.google.com/presentation/d/1WOUVmlm636_7i2l0GYa9JkX1TCK3NMdySfpxKN7IM7A/edit?usp=sharing

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Author:
Carissa Haug
Lisa Monahan
Mechelle LaLanne
NCESD contributors
Date Added:
04/13/2021
Our Invisible Forest: What's in a Drop of Seawater?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Take a breath — where does the oxygen you inhaled come from? In our changing world, will we always have enough oxygen? What is in water that supports life? What is known? How do we know what we know about our vast oceans? These are just a few of the driving questions explored in this interactive STEAM high school curriculum module.

Students in marine science, environmental science, physics, chemistry, biology, integrated science, biotechnology and/or STEAM courses can use this curriculum module in order to use real-world, big data to investigate how our “invisible forest” influences ocean and Earth systems. Students build an art project to represent their new understanding and share this with the broader community.

This 4-week set of lessons is based on the oceanographic research of Dr. Anne Thompson of Portland State University in Oregon, which focuses on the abundant ocean phytoplankton Prochlorococcus. These interdisciplinary STEAM lessons were inspired by Dr. Thompson’s lab and fieldwork as well as many beautiful visualizations of Prochlorococcus, the ocean, and Earth. Students learn about the impact and importance of Prochlorococcus as the smallest and most abundant photosynthetic organism on our planet. Through the lessons, students act as both scientists and artists as they explore where breathable oxygen comes from and consider how to communicate the importance of tiny cells to human survival.

This module is written as a phenomenon-based, Next Generation Science Standards (NGSS) three-dimensional learning unit. Each of the lessons below also has an integrated, optional Project-Based Learning component that guides students as they complete the PBL process. Students learn to model a system and also design and evaluate questions to investigate phenomena. Students ultimately learn what is in a drop of ocean water and showcase how their drop contributes to our health and the stability and dynamics of global systems.

Subject:
Applied Science
Environmental Science
Material Type:
Module
Author:
Amanda Cope
Anne W. Thompson
Baliga Lab
Barbara Steffens
Claudia Ludwig
Emily Borden
Institute for Systems Biology
Jeannine Sieler
Linnea Stavney
Mari Knutson Herbert
Mark Buchli
Michael Walker
Nitin S. Baliga
Portland State University
Uzma Khalil
Date Added:
03/09/2023
Patterns Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Our Patterns Chemistry development team of teacher leaders has been working hard through the spring and summer of 2020 to develop distance learning versions of the Patterns Chemistry units. Between March and May they released the below Distance Learning versions of units 4, 5 and 6, as well as paper packets that can be printed for students who do not have access to technology at home. Below are the distance learning version of units 1 and unit 2. The distance learning units can be used in either a fully online or hybrid school model. A Distance Learning version of Unit 3 will be released by the end of September. For schools reopening fully in person, scroll down to see the original Patterns Chemistry unit plans.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Portland STEM Partnership
Date Added:
09/03/2020
Soap from Ivy Saponins
Unrestricted Use
CC BY
Rating
0.0 stars

Remove a problem species and make a natural soap! Lindsay Hollister, JPPM's horticulturalist, shares how to identify the invasive English Ivy vine and make a soap from the saponins it naturally produces. These molecules naturally deter predators from eating the species, but their structures also make them bond to both waters and fats. Consider using the video or conducting the activity at your location as an integrated introduction to learning about biodiversity and the structures of molecules or atoms, since saponins are valuable as a soap because they are able to bond with either water or fats/lipids.

Always be sure you can successfully identify a plant before using it and take precautions to avoid negative reactions.

This resource is part of Jefferson Patterson Park and Museum’s open educational resources project to provide history, ecology, archaeology, and conservation resources related to our 560 acre public park. JPPM is a part of the Maryland Historical Trust under the Maryland Department of Planning. If you evaluate or use this resource, please respond to this short (4 question!) survey at bit.ly/3GrTjPk

Subject:
Applied Science
Biology
Botany
Chemistry
Ecology
Environmental Science
Life Science
Physical Science
Material Type:
Activity/Lab
Case Study
Provider:
Jefferson Patterson Park and Museum
Author:
JPPM Admin
Date Added:
02/03/2022
Table Salt Item Set - MISA
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

An item set that can be used to assess HS-PS1-2 and HS PS1-5. There are two tabs the student must read and then six items for them to answer.

Subject:
Physical Science
Material Type:
Assessment
Date Added:
07/05/2018
Testing pH in Household Substances (Predict-Gather-Explain)
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will investigate the pH level of household substances by testing a variety of common compounds. Substances are tested with pH paper and placed on the continuum of the pH scale range of 1 to 14. After testing a solution, the student compares the strip color to the scale provided on the container and gives the solution a rating from 1-14. Using the determined number, the name of the solution is placed on the continuum. Students will find that household substances have a specific pH property which is a characteristic needed for the substance's use. 

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Author:
Brenda Bush-Hanson
Date Added:
05/31/2021