Updating search results...

Search Resources

116 Results

View
Selected filters:
  • body
German Level 2, Activity 04: Gesundes Leben / Healthy Living (Online)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students will review vocabulary relating to the body and parts of the body. Additionally, students will practice talking about health and how they stay healthy. 

Subject:
Languages
Material Type:
Activity/Lab
Author:
Shawn Moak
Amber Hoye
Date Added:
04/21/2022
Have I ever told you about...? English Template, Intermediate Mid
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will be able to recount events that have happened to them using vocabulary about health and body parts. Students will learn to discuss injuries, illness, and medical related events. Students will also learn more about insurance and medical costs.

Subject:
Arts and Humanities
Languages
Material Type:
Activity/Lab
Date Added:
11/13/2019
Hearing: How Do Our Ears Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the anatomy of the ear and how the ears work as a sound sensor. Ear anatomy parts and structures are explained in detail, as well as how sound is transmitted mechanically and then electrically through them to the brain. Students use LEGO® robots with sound sensors to measure sound intensities, learning how the NXT brick (computer) converts the intensity of sound measured by the sensor input into a number that transmits to a screen. They build on their experiences from the previous activities and establish a rich understanding of the sound sensor and its relationship to the TaskBot's computer.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Marianne Catanho
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Help Bill! Bioprinting Skin, Muscle and Bone
Read the Fine Print
Educational Use
Rating
0.0 stars

Students operate mock 3D bioprinters in order to print tissue constructs of bone, muscle and skin for a fictitious trauma patient, Bill. The model bioprinters are made from ordinary materials— cardboard, dowels, wood, spools, duct tape, zip ties and glue (constructed by the teacher or the students)—and use squeeze bags of icing to lay down tissue layers. Student groups apply what they learned about biological tissue composition and tissue engineering in the associated lesson to design and fabricate model replacement tissues. They tangibly learn about the technical aspects and challenges of 3D bioprinting technology, as well as great detail about the complex cellular composition of tissues. At activity end, teams present their prototype designs to the class.

Subject:
Applied Science
Biology
Engineering
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
A. L. Peirce Starling
Angela Sickels
Hunter Sheldon
Nicholas Asby
Ryan Tasker-Benson
Shayn M. Peirce
Timothy Allen
Date Added:
06/20/2017
How Antibiotics Work
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to a challenge question. Towards answering the question, they generate ideas for what they need to know about medicines and how they move through our bodies, watch a few short videos to gain multiple perspectives, and then learn lecture material to obtain a basic understanding of how antibiotics kill bacteria in the human body. They learn why different forms of medicine (pill, liquid or shot) get into the blood stream at different speeds.

Subject:
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michelle Woods
Date Added:
09/18/2014
How Do Human Sensors Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson highlights the similarities between human sensors and their engineering counterparts. Taking this approach enables students to view the human body as a system, that is, from the perspective of an engineer. Humans have recreated most human sensors in robots – eyes, ears and sensors for temperature, touch and smell. The lesson inculdes a PowerPoint file that is programmed to run a Jeopardy-style game as a fun assessment tool.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Satish Nair
Date Added:
09/18/2014
How Do Sensors Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Through six lesson/activity sets, students learn about the functioning of sensors, both human and robotic. In the activities, student groups use LEGO MINDSTORMS(TM) NXT robots and components to study human senses (sight, hearing, smell, taste, touch) in more detail than in previous units in the series. They also learn about the human made rotation, touch, sound, light and ultrasonic sensors. "Stimulus-sensor-coordinator-effector-response" pathways are used to describe the processes as well as similarities between human/animal and robotic equivalent sensory systems. The important concept of sensors converting/transducing signals is emphasized. Through assorted engineering design challenges, students program the LEGO robots to respond to input from various LEGO sensors. The overall framework reinforces the theme of the human body as a system with sensors that is, from an engineering perspective. PowerPoint® presentations, quizzes and worksheets are provided throughout the unit.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Srijith Nair
Trisha Chaudhary
Date Added:
09/18/2014
How Does a Light Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn more about how light sensors work, reinforcing their similarities to the human sense of sight. They look at the light sensing process incoming light converted to electrical signals sent to the brain through the human eye anatomy as well as human-made electrical light sensors. A mini-activity, which uses LEGO MINDSTORMS(TM) NXT intelligent bricks and light sensors gives students a chance to investigate how light sensors function in preparation for the associated activity involving the light sensors and taskbots. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, and details about the LEGO light sensor, including its two modes of gathering data and what its numerical value readings mean. Students take pre/post quizzes and watch a short online video. This lesson and its associated activity enable students to gain a deeper understanding of how robots can take sensor input and use it to make decisions via programming.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Srijith Nair
Date Added:
09/18/2014
How Does a Sound Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how sound sensors work, reinforcing their similarities to the human sense of hearing. They look at the hearing process sound waves converted to electrical signals sent to the brain through human ear anatomy as well as sound sensors. A mini-activity, which uses LEGO MINDSTORMS(TM) NXT intelligent bricks and sound sensors gives students a chance to experiment with the sound sensors in preparation for the associated activity involving the sound sensors and taskbots. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, the unit of decibels, and details about the LEGO sound sensor, including how readings are displayed and its three modes of programming sound input. Students take pre/post quizzes and watch a short online video. This lesson and its associated activity enable students to appreciate how robots can take sensor input and use it to make decisions to via programming.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Srijith Nair
Date Added:
09/18/2014
How Does a Touch Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how touch sensors work, while reinforcing their similarities to the human sense of touch. They look at human senses and their electronic imitators, with special focus on the nervous system, skin and touch sensors. A PowerPoint® presentation explains stimulus-to-response pathways, how touch sensors are made and work, and then gives students a chance to handle and get familiar with the LEGO touch sensor, including programming LEGO MINDSTORMS(TM) NXT robots to use touch sensor input to play music. Students take pre/post quizzes and watch a short online video. The mini-activities prepare students for the associated activity. This lesson and its associated activity enables students to appreciate how robots can take input from sensors, and use that to make decisions to move.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Trisha Chaudhary
Date Added:
09/18/2014
How Does an Ultrasonic Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how ultrasonic sensors work, reinforcing the connection between this sensor and how humans, bats and dolphins estimate distance. They learn the echolocation process sound waves transmitted, bounced back and received, with the time difference used to calculate the distance of objects. Two mini-activities, which use LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors, give students a chance to experiment with ultrasonic sensors in preparation for the associated activity. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, and details about the LEGO ultrasonic sensor. Pre/post quizzes are provided. This lesson and its associated activity enable students to gain a deeper understanding of how robots can take sensor input and use it to make decisions via programming.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
Human and Robot Sensors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are provided with a rigorous background in human "sensors" (including information on the main five senses, sensor anatomies, and nervous system process) and their engineering equivalents, setting the stage for three associated activities involving sound sensors on LEGO® robots. As they learn how robots receive input from sensors, transmit signals and make decisions about how to move, students reinforce their understanding of the human body's sensory process.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Identifying Gait Metrics
Read the Fine Print
Educational Use
Rating
0.0 stars

Gait analysis is the study of human motion that can be utilized as biometric information or identification, for medical diagnostics or for comparative biomechanics. In this activity, students observe walking human subjects and then discuss parameters that could be used to characterize walking gaits. They use accelerometers to collect and graph acceleration vs. time data that can help in gait analysis—all part of practicing the engineering data analysis process. Students complete this activity before learning the material presented in the associated lesson.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Jeremy Scheffler
Date Added:
10/14/2015
Identifying Themes and Supporting Details in Writing
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson can be used by adult learners to gain experience in identifying the strength of themes in writing passages. Upon conclusion of the lesson students will be able to not only identify the theme of an piece of writing but also key details used to support the author’s argument.

Subject:
Education
English Language Arts
Material Type:
Lesson Plan
Date Added:
06/30/2016
If You're Not Part of the Solution, You're Part of the Precipitate!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students continue the research begun in the associated lesson as if they were biomedical engineers working for a pharmaceutical company. Groups each perform a simple chemical reaction (to precipitate solid calcium out of solution) to observe what may occur when Osteopontin levels drop in the body. With this additional research, students determine potential health complications that might arise from a new drug that could reduce inflammatory pain in many patients, improving their quality of life. The goal of this activity is to illustrate biomedical engineering as medical problem solving, as well as emphasize the importance of maintaining normal body chemistry.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Angela D. Kolonich
Date Added:
09/18/2014
Interrogative Design Workshop
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"Parrhesia" was an Athenian right to frank and open speaking, the right that, like the First Amendment, demands a "fearless speaker" who must challenge political powers with criticism and unsolicited advice. Can designer and artist respond today to such a democratic call and demand? Is it possible to do so despite the (increasing) restrictions imposed on our liberties today? Can the designer or public artist operate as a proactive "parrhesiatic" agent and contribute to the protection, development and dissemination of "fearless speaking" in Public Space?

Subject:
Art History
Arts and Humanities
Graphic Arts
Visual Arts
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Wodiczko, Krzysztof
Date Added:
09/01/2005
Intraocular Pressure Sensor Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Acting as if they are biomedical engineers, students design and print 3D prototypes of pressure sensors that measure the pressure of the eyes of people diagnosed with glaucoma. After completing the tasks within the associated lesson, students conduct research on pressure gauges, apply their understanding of radio-frequency identification (RFID) technology and its components, iterate their designs to make improvements, and use 3D software to design and print 3D prototypes. After successful 3D printing, teams present their models to their peers. If a 3D printer is not available, use alternate fabrication materials such as modeling clay, or end the activity once the designs are complete.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janelle Orange
Date Added:
10/14/2015
Introduction to Psychology: Mind & Body
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This textbook is designed for Chemeketa Community College's PSY 201. NOBA provides ancillary materials, and a common course cartridge is also available by request with more quiz questions for this content. Print copies are available from http://www.lulu.com/shop/noba-project/introduction-to-psychology-mind-body/paperback/product-22882311.html.

Subject:
Psychology
Social Science
Material Type:
Textbook
Provider:
Diener Education Fund
Provider Set:
Noba
Author:
Adam John Privitera
Date Added:
06/13/2017
Introduction to the Visual Arts
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class will introduce students to a variety of contemporary art practices and ideas. The class will begin with a brief overview of 'visual language' by looking at a variety of artworks and discussing basic concepts revolving around artistic practice. The rest of the class will focus on notions of the real/unreal as explored with various mediums and practices. The class will work in video, sculpture and in public space.

Subject:
Arts and Humanities
Visual Arts
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Zane, Joe
Date Added:
02/01/2007
Intro to 3D Bioprinting: Design, Applications and Limitations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the current applications and limitations of 3D bioprinting, as well as its amazing future potential. This lesson, and its fun associated activity, provides a unique way to review and explore concepts such as differing cell functions, multicellular organism complexity, and engineering design steps. As introduced through a PowerPoint® presentation, students learn about three different types of bioprinters, with a focus on the extrusion model. Then they learn the basics of tissue engineering and the steps to design printed tissues. This background information prepares students to conduct the associated activity in which they use mock-3D bioprinters composed of a desktop setup that uses bags of icing to “bioprint” replacement skin, bone and muscle for a fictitious trauma patient, Bill. A pre/post-quiz is also provided.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
A. L. Peirce Starling
Angela Sickels
Hunter Sheldon
Nicholas Asby
Ryan Tasker-Benson
Shayn M. Peirce
Timothy Allen
Date Added:
06/20/2017