Updating search results...

Search Resources

252 Results

View
Selected filters:
  • Life Science
  • Community College / Lower Division
  • Full Course
Biochemical Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the interaction of chemical engineering, biochemistry, and microbiology. Mathematical representations of microbial systems are featured among lecture topics. Kinetics of growth, death, and metabolism are also covered. Continuous fermentation, agitation, mass transfer, and scale-up in fermentation systems, and enzyme technology round out the subject material.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Jones Prather, Kristala
Date Added:
02/01/2005
Biochemistry Laboratory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course, which spans two thirds of a semester, provides students with a research-inspired laboratory experience that introduces standard biochemical techniques in the context of investigating a current and exciting research topic, acquired resistance to the cancer drug Gleevec. Techniques include protein expression, purification, and gel analysis, PCR, site-directed mutagenesis, kinase activity assays, and protein structure viewing.
This class is part of the new laboratory curriculum in the MIT Department of Chemistry. Undergraduate Research-Inspired Experimental Chemistry Alternatives (URIECA) introduces students to cutting edge research topics in a modular format.
Acknowledgments
Development of this course was funded through an HHMI Professors grant to Professor Catherine L. Drennan.

Subject:
Biology
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Taylor, Elizabeth
Date Added:
02/01/2009
Biochemistry and Pharmacology of Synaptic Transmission
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. We focus on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); we also examine amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems and ion fluxes that they control. The involvement of particular neurotransmitters in human diseases is considered.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Wurtman, Richard
Date Added:
09/01/2007
Bioinformatics and Proteomics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This interdisciplinary course provides a hands-on approach to students in the topics of bioinformatics and proteomics. Lectures and labs cover sequence analysis, microarray expression analysis, Bayesian methods, control theory, scale-free networks, and biotechnology applications. Designed for those with a computational and/or engineering background, it will include current real-world examples, actual implementations, and engineering design issues. Where applicable, engineering issues from signal processing, network theory, machine learning, robotics and other domains will be expounded upon.

Subject:
Applied Science
Biology
Computer Science
Engineering
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Alterovitz, Gil
Kellis, Manolis
Ramoni, Marco
Date Added:
01/01/2005
Biological Chemistry I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course examines the chemical and physical properties of the cell and its building blocks, with special emphasis on the structures of proteins and principles of catalysis, as well as the chemistry of organic / inorganic cofactors required for chemical transformations within the cell. Topics encompass the basic principles of metabolism and regulation in pathways, including glycolysis, gluconeogenesis, fatty acid synthesis / degradation, pentose phosphate pathway, Krebs cycle and oxidative phosphorylation.

Course Format
This OCW Scholar course, designed for independent study, is closely modeled on the course taught on the MIT campus. The on-campus course has two types of class sessions: Lectures and recitations. The lectures meet three times each week and recitations meet once a week. In recitations, an instructor or Teaching Assistant elaborates on concepts presented in lecture, working through new examples with student participation, and answers questions.
MIT students who take the corresponding residential class typically report an average of 10–15 hours spent each week, including lectures, recitations, readings, homework, and exams. All students are encouraged to supplement the textbooks and readings with their own research.
The Scholar course has three major learning units, called Modules. Each module has been divided into a sequence of lecture sessions that include:

Textbook Readings
Lecture Notes or Storyboards
A video by Professor JoAnne Stubbe or Professor John Essigmann
Problem Sets and solutions

To help guide your learning, each of these problem sets are accompanied by Problem Solving Videos where Dr. Bogdan Fedeles solves one of the problems from the set.

Subject:
Biology
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Essigmann, John
Fedeles, Bogdan
Stubbe, Joanne
Date Added:
09/01/2013
Biological Chemistry II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an advanced treatment of biochemical mechanisms that underlie biological processes. Topics include macromolecular machines such as the ribosome, the proteasome, fatty acid synthases as a paradigm for polyketide synthases and non-ribosomal polypeptide synthases, and polymerases. Emphasis will be given to the experimental methods used to unravel how these processes fit into the cellular context as well as the coordinated regulation of these processes.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Nolan, Elizabeth
Stubbe, Joanne
Date Added:
02/01/2016
Biological Engineering Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course illustrates how knowledge and principles of biology, biochemistry, and engineering are integrated to create new products for societal benefit. It uses a case study format to examine recently developed products of pharmaceutical and biotechnology industries: how a product evolves from initial idea, through patents, testing, evaluation, production, and marketing. Emphasizes scientific and engineering principles; the responsibility scientists, engineers, and business executives have for the consequences of their technology; and instruction and practice in written and oral communication.
The topic focus of this class will vary from year to year. This version looks at inflammation underlying many diseases, specifically its role in cancer, diabetes, and cardiovascular disease.

Subject:
Applied Science
Biology
Engineering
Health, Medicine and Nursing
Life Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Banuazizi, Atissa
Breindel, Harlan
Essigmann, John
Irvine, Darrell
Poe, Mya
White, Forest
Date Added:
02/01/2010
Biological Engineering II: Instrumentation and Measurement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.

Subject:
Applied Science
Biology
Career and Technical Education
Electronic Technology
Engineering
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Manalis, Scott
Shusteff, Maxim
So, Peter
Date Added:
09/01/2006
Biological Engineering Programming
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course problems from biological engineering are used to develop structured computer programming skills and explore the theory and practice of complex systems design and construction.
The official course Web site can be viewed at: BE.180 Biological Engineering Programming.

Subject:
Applied Science
Biology
Computer Science
Engineering
Life Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Endy, Andrew
Date Added:
02/01/2006
Biology I
Unrestricted Use
CC BY
Rating
0.0 stars

An introduction to cellular and molecular biology. Major topics include the biochemical basis of life, cell biology, photosynthesis, respiration, mitosis, meiosis, genetics, DNA structure and replication and protein synthesis. Students engage the scientific method by designing, conducting and evaluating laboratory experiences that include selected topics in cell structure and function, enzymes, respiration, photosynthesis, genetics and molecular biology. NOTE: Students may receive credit for BIO 119 or BIO 126, but not for both.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Greenfield Community College
Author:
Amanda Hyde
Date Added:
05/06/2019
Biology II
Unrestricted Use
CC BY
Rating
0.0 stars

This course is an introduction to organismal biology with a focus on evolution, the diversity of life and ecology. Major topics include the processes and outcomes of microevolution, macroevolution and the history of life, a survey of the major groups of eukaryotic organisms, basic plant and animal structures and their functions, and ecology. Students engage the scientific method by designing, conducting and evaluating laboratory experiences that include selected topics in seedless plants, seed plants, invertebrates, chordates, animal behavior, ecology and evolution. Field-based lab experiences train students to observe, collect, measure and monitor organisms in the wild.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Greenfield Community College
Author:
Amanda Hyde
Date Added:
05/06/2019
Biology for Majors I
Unrestricted Use
CC BY
Rating
0.0 stars

This gateway biology course provides a strong foundation in the principles of biology for students majoring in Natural Science, medical and healthcare fields. It is the second of a two-course sequence. Primary topics such as the history of life, body systems, and ecology are covered in this course.

This course was developed by Lumen Learning, with contributing work from Shelli Carter. The course is based on the OpenStax textbook Biology, supplemented with relevant materials from Khan Academy and videos from multiple sources. Original practice activities were authored by Shelli Carter and Lumen Learning in the development of this course.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Lumen Learning
Date Added:
10/13/2020
Biology of Human Reproduction
Unrestricted Use
CC BY
Rating
0.0 stars

This is a one-semester course covering various aspects of human reproduction, from anatomy and physiology of the reproductive systems to genetics to assisted

reproductive technologies, etc. The text currently in use is not only expensive but also dated,

with a publication date of 2005. I will redesign the course to include all topics listed in the

college course description, in module format. I

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Bristol Community College
Author:
Susan Barrett
Date Added:
05/01/2019
Biomaterials and Devices for Disease Diagnosis and Therapy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will learn about the use of biomaterials to create advanced diagnostic tools for detection of infectious and chronic diseases, restore insulin production to supplement lost pancreatic function in diabetes, provide cells with appropriate physical, mechanical, and biochemical cues to direct tissue regeneration, and enhance the efficacy of cancer immunotherapy.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Applied Science
Biology
Engineering
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Beyzavi, Ali
McHugh, Kevin
Date Added:
09/01/2018
Biomimetic Principles and Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Biomimetics is based on the belief that nature, at least at times, is a good engineer. Biomimesis is the scientific method of learning new principles and processes based on systematic study, observation and experimentation with live animals and organisms. This Freshman Advising Seminar on the topic is a way for freshmen to explore some of MIT's richness and learn more about what they may want to study in later years.

Subject:
Applied Science
Biology
Engineering
Life Science
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Triantafyllou, Michael
Date Added:
09/01/2013
Biomolecular Feedback Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.

Subject:
Applied Science
Biology
Engineering
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Del Vecchio, Domitilla
Date Added:
02/01/2015
Boundless Microbiology
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Microbiology is a broad term which includes virology, mycology, parasitology, bacteriology, immunology, and other branches. A microbiologist is a specialist in microbiology and these related topics. Microbiological procedures usually must be aseptic and use a variety of tools such as light microscopes with a combination of stains and dyes. As microbes are absolutely required for most facets of human life.

Subject:
Biology
Life Science
Material Type:
Assessment
Full Course
Textbook
Provider:
Lumen Learning
Author:
Boundless
Date Added:
02/25/2022