Updating search results...

Search Resources

35 Results

View
Selected filters:
  • solar-power
Power to the People
Read the Fine Print
Educational Use
Rating
0.0 stars

Students read and evaluate descriptions of how people live "off the grid" using solar power and come to understand better the degree to which that lifestyle is or is not truly independent of technological, economic and cultural infrastructure and resources. In the process, students develop a deeper appreciation of the meaning of "community" and the need for human connection. This activity is geared towards fifth-grade and older students and Internet research capabilities are required. Portions of this activity may be appropriate with younger students.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Racing with the Sun - Creating a Solar Car
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use engineering design principles to construct and test a fully solar powered model car. Several options exist, though we recommend the "Junior Solar Sprint" (JSS) Car Kits that can be purchased with direction from the federal government. Using the JSS kit from Solar World, students are provided with a photovoltaic panel that produces ~3V at ~3W. An optional accessory kit also from Solar World includes wheels, axles and drive gears. A chassis must be built additionally. Balsa wood provides an excellent option though many others are available. The testing of the solar car culminates in a solar race between classmates.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Rahmin Sarabi
Date Added:
09/18/2014
Radiative Transfer
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Environmental Science
Environmental Studies
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chen, Gang
Date Added:
02/01/2006
Renewable Energy Living Lab: Power Your School
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to calculate the potential for solar and wind energy generation at their school location. After examining maps and analyzing data from the online Renewable Energy Living Lab, they write recommendations as to the optimal form of renewable energy the school should pursue.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Renewable Energy Living Lab: Smart Solar
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate whether solar power is a viable energy alternative for several cities in different parts of the U.S. Working in small groups, they examine maps and make calculations using NREL/US DOE data from the online Renewable Energy Living Lab. In this exercise, students analyze cost and availability for solar power, and come to conclusions about whether solar power is a good solution for four different locations.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Renewable Energy Living Lab: The Bright Idea
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate the feasibility of solar energy and other renewable energy sources in different U.S. locations. Working in small groups, students act as engineers evaluating the suitability of installing solar panels at four company locations. They access data from the online Renewable Energy Living Lab from which they make calculations and analyze how successful solar energy generation would be, as well as the potential for other power sources at those locations. Then they summarize their results, analysis and recommendations in the form of feasibility plans prepared for a CEO.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
S2 E4: TIL about wind and solar power
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

What will it take to generate the electricity our society needs, without generating carbon emissions? In this episode of TILclimate (Today I Learned Climate), Dr. Magdalena Klemun at the MIT Institute for Data, Systems and Society joins host Laur Hesse Fisher to begin exploring this question, starting with wind and solar power. What exactly are wind and solar power? What challenges do we currently face when trying to use wind and solar to generate most of our electricity? What’s the role of energy storage, and what could our future zero-carbon energy mix look like?

Subject:
Atmospheric Science
Physical Science
Material Type:
Lesson
Provider:
MIT
Provider Set:
TILclimate Educator Hub
Date Added:
06/22/2022
Solar Angles and Tracking Systems
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the daily and annual cycles of solar angles used in power calculations to maximize photovoltaic power generation. They gain an overview of solar tracking systems that improve PV panel efficiency by following the sun through the sky.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Eszter Horanyi
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Solar Cookers
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

In this project students will research and then build a basic solar cooker shell made out of cardboard. Then they will run a variety of materials through experiments. Data from the experiments will be used to determine which materials should be added to the solar cooker shell to improve its ability to heat up food.

This project was created as a collaboration between a science and an engineering/woodshop class. The engineering class researched and build the basic solar cooker cardboard shells. The science class tested additional materials to add to the shells to improve the solar cookers. Then the engineering class, following the directions from reports created by the science class, added the materials to the solar cooker shells to create the final products.

Subject:
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Reading
Unit of Study
Provider:
Lane County STEM Hub
Provider Set:
Content in Context SuperLessons
Date Added:
06/20/2016
Solar Farm Cost-Benefit Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

A cost-benefit analysis is a good way to weigh the costs and the benefits and compare them to see if the decisions being made are sound and worthwhile. For a hypothetical solar farm design problem, students are given a solar cost-benefit analysis sheet to complete within groups. They weigh the expense and benefits of two types of solar panels (with different costs, wattage outputs and land impacts), consider the cost of using the acreage for solar (which removes it from ranching use), and explain why they consider the panel combination they propose to be best. If the costs outweigh the benefits, then a project is not worth doing. On the other hand, if the benefits outweigh the costs, then it is worth implementing the plan.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Ashley Martin
Dale Gaddis
Hannah Brooks
Lazar Trifunovic
Shay Marceau
Date Added:
04/19/2017
Solar Power to the Rescue!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how the innovative engineering of photovoltaics enables us to transform the sun’s energy into usable power—electricity—through the use of photovoltaic cells. Watching a short video clip from “The Martian” movie shows the importance of photovoltaics in powering space exploration at extreme distances from the Earth. Then students learn that the photovoltaic technologies designed to excel in the harsh environment of space have the potential to be just as beneficial on Earth—providing electricity-generating systems based on renewable energy sources is important for our electricity-gobbling society. Two student journaling sheets assist with vocabulary and concepts.

Subject:
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Jodie Guillen
Date Added:
01/12/2018
Solar Resource Assessment and Economics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Are you interested in Solar Energy? Solar Resource Assessment and Economics explores the methods, economic criteria, and meteorological background for assessing the solar resource with respect to project development of solar energy conversion systems for stakeholders in a given locale. It provides students with an in-depth exploration of the physical qualities of the solar resource, estimation of the fractional contributions of irradiance to total demand, and economic assessment of the solar resource. The course utilizes real data sets and resources to provide students context for the drivers, frameworks, and requirements of solar energy evaluation.

Subject:
Applied Science
Atmospheric Science
Business and Communication
Engineering
Environmental Science
Finance
History
Physical Science
U.S. History
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Jeffrey Brownson
Date Added:
10/07/2019
Speedy & Compact: The Perfect Vehicle for Your Future
Read the Fine Print
Educational Use
Rating
0.0 stars

As if they are engineers, students are tasked to design solar-powered model vehicles that are speedy and compact in order to make recommendations to a local car sales company. Teams familiarize themselves with the materials by building solar-panel model car prototypes, following kit instructions, which they test for speed. After making design improvements, they test again. Then they take measurements and calculate the volume of each team’s vehicle. They rank all teams’ vehicles by speed and by size. After data analyses, reflection and team discussion, students write recommendations to the car company about the vehicle they think is best for consumers. Youngsters experience key portions of the engineering design process and learn the importance of testing and collaborating in order to make better products. Pre/post-quizzes and numerous worksheets and handouts are provided.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Ameer Hicks
Jack Sparrow
Lisa VanOrder
Date Added:
02/20/2018
The Temperature Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how the efficiency of a solar photovoltaic (PV) panel is affected by the ambient temperature. They learn how engineers predict the power output of a PV panel at different temperatures and examine some real-world engineering applications used to control the temperature of PV panels.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Eszter Horanyi
Jack Baum
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Utility Solar Electric and Concentration
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

EME 812 explores the main physical principles of core solar energy conversion systems, including direct power conversion photovoltaics, concentrating photovoltaics (CPV), and thermal conversion to electricity via concentrating solar power strategies (CSP). It also covers the fundamentals of enabling technologies such as light concentration, solar tracking, power conversion cycles, power conditioning and distribution. Learning in EME 812 relies on analysis of design and performance of existing solar plants that have been deployed in areas such as the southwestern USA, Spain, and North Africa.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Physics
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Mark Fedkin
Date Added:
10/07/2019