Updating search results...

Search Resources

13 Results

View
Selected filters:
  • reverse-engineering
Assembly Required and the Design Process Too!
Read the Fine Print
Educational Use
Rating
0.0 stars

As teachers it is important to interject real-world applications with science and math whenever possible.  Students often do not connect the principles to the career opportunities.  In our society, advanced manufacturing is creating many exciting careers that incorporate these scientific principles and provide excellent salaries.  This project will require students to determine and design methods that will move a selected product in a designed assembly process.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
North Carolina State University
Provider Set:
Kenan Fellows Program for Curriculum and Leadership Development
Author:
Henrietta Juston
Date Added:
03/03/2016
Biomimetic Principles and Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Biomimetics is based on the belief that nature, at least at times, is a good engineer. Biomimesis is the scientific method of learning new principles and processes based on systematic study, observation and experimentation with live animals and organisms. This Freshman Advising Seminar on the topic is a way for freshmen to explore some of MIT's richness and learn more about what they may want to study in later years.

Subject:
Applied Science
Biology
Engineering
Life Science
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Triantafyllou, Michael
Date Added:
09/01/2013
Design Inspired by Nature
Read the Fine Print
Educational Use
Rating
0.0 stars

Students discover how engineers can use biomimicry to enhance their designs. They learn how careful observation of nature becoming a nature detective, so to speak can lead to new innovations and products. In this activity, students reverse engineer a flower to glean design ideas for new products.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Lauren Cooper
Malinda Zarske
Date Added:
09/18/2014
Design Step 2: Research the Problem
Read the Fine Print
Educational Use
Rating
0.0 stars

Through Internet research, patent research, standards and codes research, user interviews (if possible) and other techniques (idea web, reverse engineering), students further develop the context for their design challenge. In subsequent activities, the design teams use this body of knowledge about the problem to generate product design ideas. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function]. This activity is Step 2 in a series of six that guide students through the engineering design loop.)

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Disassemble a Click Pen
Read the Fine Print
Educational Use
Rating
0.0 stars

Students disassemble and analyze retractable pens. Through the process of "reverse engineering," they learn how the ink pens work.

Subject:
Applied Science
Engineering
Geoscience
Life Science
Physical Science
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Lending a Hand: Teaching Forces through Assistive Device Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how biomedical engineers create assistive devices for persons with fine motor skill disabilities. They learn about types of forces, balanced and unbalanced forces, and the relationship between form and function, as well as the structure of the hand. They do this by designing, building and testing their own hand "gripper" prototypes that are able to grasp and lift a 200 ml cup of sand.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kelly Cox
Kristen Billiar
Terri Camesano
Date Added:
10/14/2015
Mini Car Design Challenge
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This engineering design challenge is a great hands-on activity that utilizes the engineering design process, 3D modeling, and 3D printing technology. The challenge can be completed individually or in groups of 2 to 3. Students will work to complete the following challenge: Using the design process, design, document, model, and produce a toy car with interchangeable parts.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Date Added:
05/07/2021
Mini Car Design Challenge
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This engineering design challenge is a great hands-on activity that utilizes the engineering design process, 3D modeling, and 3D printing technology. The challenge can be completed individually or in groups of 2 to 3. Students will work to complete the following challenge: Using the design process, design, document, model, and produce a toy car with interchangeable parts.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Date Added:
12/05/2018
Mini Car Design Challenge
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This engineering design challenge is a great hands-on activity that utilizes the engineering design process, 3D modeling, and 3D printing technology. The challenge can be completed individually or in groups of 2 to 3. Students will work to complete the following challenge: Using the design process, design, document, model, and produce a toy car with interchangeable parts.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Date Added:
05/09/2021
Mini Car Design Challenge
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This engineering design challenge is a great hands-on activity that utilizes the engineering design process, 3D modeling, and 3D printing technology. The challenge can be completed individually or in groups of 2 to 3. Students will work to complete the following challenge: Using the design process, design, document, model, and produce a toy car with interchangeable parts.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Date Added:
05/12/2021
Mini Car Design Challenge
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This engineering design challenge is a great hands-on activity that utilizes the engineering design process, 3D modeling, and 3D printing technology. The challenge can be completed individually or in groups of 2 to 3. Students will work to complete the following challenge: Using the design process, design, document, model, and produce a toy car with interchangeable parts.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Date Added:
06/16/2021
Reverse Engineering: Ball Bounce Experiment
Read the Fine Print
Educational Use
Rating
0.0 stars

Many of today's popular sports are based around the use of balls, yet none of the balls are completely alike. In fact, they are all designed with specific characteristics in mind and are quite varied. Students investigate different balls' abilities to bounce and represent the data they collect graphically.

Subject:
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Date Added:
01/01/2015
Reverse Engineering Project
Read the Fine Print
Educational Use
Rating
0.0 stars

Student pairs reverse engineer objects of their choice, learning what it takes to be an engineer. Groups each make a proposal, create a team work contract, use tools to disassemble a device, and sketch and document their full understanding of how it works. They compile what they learned into a manual and write-up that summarizes the object's purpose, bill of materials and operation procedure with orthographic and isometric sketches. Then they apply some of the steps of the engineering design process to come up with ideas for how the product or device could be improved for the benefit of the end user, manufacturer and/or environment. They describe and sketch their ideas for re-imagined designs (no prototyping or testing is done). To conclude, teams compile full reports and then recap their reverse engineering projects and investigation discoveries in brief class presentations. A PowerPoint(TM) presentation, written report and oral presentation rubrics, and peer evaluation form are provided.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alexa Garfinkel
Date Added:
10/14/2015