Updating search results...

Search Resources

154 Results

View
Selected filters:
  • dna
Acquired or Inherited?  These are my genes!
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this project, each student will be assigned to a group of three to four students. Each group will be given random character description cards. These characters will be treated as the first generation in a fictitious town. The cards will include specific genetic traits, skills, jobs, as well as reference if the character suffers from type 2 diabetes. Students will need to use the character cards to author and illustrate a short story about the fictitious town which follows at least three generations of the families in the cards. Students must also include pedigrees for a minimum of three traits as well as diabetes as evidence of inheritance.

Subject:
Biology
Genetics
Life Science
Material Type:
Activity/Lab
Assessment
Lesson Plan
Date Added:
04/04/2019
Anatomy and Physiology
Unrestricted Use
CC BY
Rating
0.0 stars

Anatomy and Physiology is a dynamic textbook for the two-semester human anatomy and physiology course for life science and allied health majors. The book is organized by body system and covers standard scope and sequence requirements. Its lucid text, strategically constructed art, career features, and links to external learning tools address the critical teaching and learning challenges in the course. The web-based version of Anatomy and Physiology also features links to surgical videos, histology, and interactive diagrams.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
07/23/2019
Antiparallel structure of DNA strands
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

DNA is composed of two strands of nucleotides held together by hydrogen bonding. The strands each run from 5' to 3' and run in antiparallel, or opposite, directions from one another.

Subject:
Biology
Genetics
Life Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
07/16/2015
Bacteria Transformation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
09/18/2014
Becoming Human: Interactive Documentary
Read the Fine Print
Educational Use
Rating
0.0 stars

Becoming Human is an interactive documentary experience that tells the story of human origins. Multimedia, research and scholarship are presented to promote greater understanding of the course of human evolution. This site includes classroom materials, subject-designed exercises, games and activities to help make connections between the concepts that are presented and student learning. PDF versions of the resources may be downloaded from the site.

Subject:
Anthropology
Arts and Humanities
Social Science
Material Type:
Activity/Lab
Lecture
Lesson Plan
Provider:
Institute of Human Origins
Provider Set:
Becoming Human
Author:
Individual Authors
Date Added:
08/20/2011
Bio-Engineering: Making and Testing Model Proteins
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as if they are biological engineers following the steps of the engineering design process to design and create protein models to replace the defective proteins in a child’s body. Jumping off from a basic understanding of DNA and its transcription and translation processes, students learn about the many different proteins types and what happens if protein mutations occur. Then they focus on structural, transport and defense proteins during three challenges posed by the R&D; bio-engineering hypothetical scenario. Using common classroom supplies such as paper, tape and craft sticks, student pairs design, sketch, build, test and improve their own protein models to meet specific functional requirements: to strengthen bones (collagen), to capture oxygen molecules (hemoglobin) and to capture bacteria (antibody). By designing and testing physical models to accomplish certain functional requirements, students come to understand the relationship between protein structure and function. They graph and analyze the class data, then share and compare results across all teams to determine which models were the most successful. Includes a quiz, three worksheets and a reference sheet.

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Beth Podoll
Lauren Sako
Date Added:
06/07/2018
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, Genetics, DNA Structure and Function, DNA Structure and Sequencing
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe the structure of DNAExplain the Sanger method of DNA sequencingDiscuss the similarities and differences between eukaryotic and prokaryotic DNA

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017