Updating search results...

Search Resources

114 Results

View
Selected filters:
  • velocity
Fun with Bernoulli
Read the Fine Print
Educational Use
Rating
0.0 stars

While we know air exists around us all the time, we usually do not notice the air pressure. During this activity, students use Bernoulli's principle to manipulate air pressure so its influence can be seen on the objects around us.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
"Gaitway" to Acceleration: Walking Your Way to Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams use sensors—motion detectors and accelerometers—to collect walking gait data from group members. They import their collected position and acceleration data into Excel® for graphing and analysis to discover the relationships between position, velocity and acceleration in the walking gaits. Then they apply their understanding of slopes of secant lines and Riemann sums to generate and graph additional data. These activities provide practice in the data collection and analysis of systems, similar to the work of real-world engineers.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Jeremy Scheffler
Date Added:
10/14/2015
Gravity and Orbits
Unrestricted Use
CC BY
Rating
0.0 stars

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Subject:
Astronomy
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
John Blanco
Jon Olson
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
02/07/2011
Gravity and Orbits (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Subject:
Astronomy
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
John Blanco
Jon Olson
Kathy Perkins
Noah Podolefsky
Patricia Loblein
Sam Reid
Date Added:
02/07/2011
How to collisions change the speed and direction of an object in motion?
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

Students will investigate how collisions can change the direction and speed of an object in terms of a change in energy. This is important to understand for many sports as well as many safety issues on the road.

Subject:
Physical Science
Material Type:
Lesson Plan
Author:
Allyson Loomis
Julianne Wenner
Date Added:
10/21/2019
Instantaneous speed and velocity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Instantaneous speed and velocity looks at really small displacements over really small periods of time. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
David SantoPietro
Date Added:
07/02/2021
Introduction to Mechanics
Unrestricted Use
CC BY
Rating
0.0 stars

This course will survey physics concepts and their respective applications; it is intended as a basic introduction to the current physical understanding of our universe. In this course, the student will study physics from the ground up, learning the basic principles of physical law, their application to the behavior of objects, and the use of the scientific method in driving advances in this knowledge. This course focuses on Newtonian mechanics--how objects move and interact--rather than Electromagnetism or Quantum Mechanics. While mathematics is the language of physics, the student need only be familiar with high school-level algebra, geometry, and trigonometry; the small amount of additional math needed will be developed during the course. (Physics 101; See also: Biology 109, Chemistry 001, Mechanical Engineering 005)

Subject:
Mathematics
Physical Science
Physics
Trigonometry
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
11/16/2011
Introduction to momentum
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Momentum (P) is equal to mass (M) times velocity (v). But there are other ways to think about momentum! Force (F) is equal to the change in momentum (ΔP) over the change in time (Δt). And the change in momentum (ΔP) is also equal to the impulse (J). Impulse has the same units as momentum (kg*m/s or N*s). Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
07/02/2021
Intro to Vectors Physics and Augmented Reality
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about video motion capture technology, becoming familiar with concepts such as vector components, magnitudes and directions, position, velocity, and acceleration. They use a (free) classroom data collection and processing tool—the ARK Mirror—to visualize and record 3-D motion. The Augmented Reality Kinematics (ARK) Mirror software collects data via a motion detector. Using an Orbbec Astra Pro 3D camera or Microsoft Kinect (see note below), students can visualize and record a robust set of data and interpret them using statistical and graphical methods. This lesson introduces students to just one possible application of the ARK Mirror software—in the context of a high school physics class. Note: The ARK Mirror is ported to operate on an Orbbec platform. It may also be used with a Microsoft Kinect, although that Microsoft hardware has been discontinued. Refer to the Using ARK Mirror and Microsoft Kinect attachment for how to use the ARK MIrror software with Microsoft Kinect.

Subject:
Applied Science
Computer Science
Engineering
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Jackson Reimers
Date Added:
08/30/2018
Investigating Friction:  Investigate How the Force of Friction Opposes Motion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity needs large linoleum, carpet and tar or asphalt space to race student constructed balloon powered cars. Students will learn that speed, velocity, and changes in velocity are the result of the action of forces on objects

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Faye Sandy
Date Added:
08/10/2012
Investigating Speed and Velocity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity students will conduct an investigation on speed and velocity by designing a roller coaster model.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Kathy Serratore
Date Added:
08/10/2012
Kinematics test
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Kinematics test Grade 10made of 22 questions about acceleration and velocity

Subject:
Physics
Material Type:
Lesson Plan
Author:
Mostafa Soukarieh
Date Added:
09/06/2018
Kinetic and Potential Energy of Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to both potential energy and kinetic energy as forms of mechanical energy. A hands-on activity demonstrates how potential energy can change into kinetic energy by swinging a pendulum, illustrating the concept of conservation of energy. Students calculate the potential energy of the pendulum and predict how fast it will travel knowing that the potential energy will convert into kinetic energy. They verify their predictions by measuring the speed of the pendulum.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
Ladybug Motion 2D
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Noah Podolefsky
Sam Reid
Trish Loeblein
Wendy Adams
Date Added:
04/01/2009
Launch Speed
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This example shows how Newton's laws of motion apply to aircraft carriers and introduces the lift equation: the amount of lift depends on the air density, the wind velocity, and the surface area of the wings. The problems stress the importance of units of measure. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.

Subject:
Geoscience
Mathematics
Physical Science
Physics
Material Type:
Lecture Notes
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Magical Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students watch video clips from the October Sky and Harry Potter and the Sorcerer's Stone movies to see examples of projectile motion. Then they explore the relationships between displacement, velocity and acceleration, and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on "The Science Behind Harry Potter" theme. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014