# Atomistic Computer Modeling of Materials (SMA 5107), Spring 2005

This course uses the theory and application of atomistic computer simulations to ... (more)

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure approaches, molecular dynamics, and Monte Carlo. (less)

- Subject:
- Science and Technology
- Material Type:
- Activities and Labs
- Case Study
- Full Course
- Lecture Notes
- Syllabi
- Video Lectures
- Provider:
- M.I.T.
- Provider Set:
- MIT OpenCourseWare
- Author:
- Ceder, Gerbrand
- Marzari, Nicola