Updating search results...

Search Resources

27 Results

View
Selected filters:
  • Carnegie Mellon University
Acid Dilution Problem
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

In this activity, students use the virtual lab to create 500mL of 3M HCl solution from a concentrated stock solution of 11.6M HCl. They must first calculate the correct volumes of 11.6M HCl solution and water to mix together to create the final solution. Next, they prepare the solution using the appropriate glassware, and then can check their answer using the concentration viewer in the solution info panel.

Subject:
Chemistry
Material Type:
Activity/Lab
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Date Added:
02/05/2021
Behavior of Sample Mean (1 of 3)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Apply the sampling distribution of the sample mean as summarized by the Central Limit Theorem (when appropriate). In particular, be able to identify unusual samples from a given population.

Subject:
Statistics and Probability
Material Type:
Module
Provider:
Carnegie Mellon University
Provider Set:
Open Learning Initiative
Date Added:
12/29/2017
Cola and Sucrose Concentration Problem
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

In this activity, students use the virtual lab to prepare a sucrose solution for a soda recipe. They next calculate the concentration of their solution in terms of molarity, percent mass and density.

Subject:
Chemistry
Material Type:
Lesson
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Date Added:
02/05/2021
Default Virtual Lab Stockroom
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

The Virtual Lab is an online simulation of a chemistry lab. It is designed to help students link chemical computations with authentic laboratory chemistry. The lab allows students to select from hundreds of standard reagents (aqueous) and manipulate them in a manner resembling a real lab.

Simulations:

• Default Virtual Lab Stockroom
• Stoichiometry
• Glucose Dilution Problem
• Acid Dilution Problem
• Cola and Sucrose Concentration Problem
• Making Stock Solutions from Solids
• Identifying the Unknown Metal (Metals Density Problem)
• Identifying an Unknown Liquid from its Density
• Alcohol Density Problem
• Gravimetric Determination of Arsenic
• Determining Stoichiometric Coefficients
• Stoichiometry and Solution Preparation Problem
• Textbook Style Limiting Reagents Problems
• Textbook Style Limiting Reagents Problem II
• Predicting DNA Concentration
• Unknown Concentration of DNA Solution Problem
• Thermochemistry
• Camping Problem I
• Camping Problem II
• ATP Reaction (Thermochemistry and Bonding)
• Determining the Heat of Reaction in Aqueous Solution
• Coffee Problem
• Measuring the heat capacity of an engine coolant
• Measuring the heat capacity of an engine coolant II (Advanced version)
• Camping Problem III
• Heats of Reaction - Hess' Law
• Equilibrium
• Cobalt Chloride and LeChatlier’s Principle
• DNA Binding Problem
• Acid-Base Chemistry
• Strong Acid and Base Problems
• Determination of the pH Scale by the Method of Successive Dilutions
• Weak Acid and Base Problems
• Determining the pKa and Concentration Ratio of a Protein in Solution
• Unknown Acid and Base Problem
• Creating a Buffer Solution
• DNA - Dye Binding: Equilibrium and Buffer Solutions
• Determining the pKa and Concentration Ratio of a Protein in Solution
• Standardization of NaOH with a KHP solution: Acid Base Titration
• Solubility
• Determining the Solubility Product
• Temperature and the Solubility of Salts
• Determining the solubility of copper chloride at different temperatures
• Oxidation/Reduction and Electrochemistry
• Exploring Oxidation-Reduction Reactions
• Analytical Chemistry/Lab Techniques
• Standardization of NaOH with a KHP solution: Acid Base Titration
• Unknown Silver Chloride

Subject:
Chemistry
Material Type:
Activity/Lab
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Author:
Chemcollective
Date Added:
05/03/2022
Estimation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Learning Objectives: 1).Determine point estimates in simple cases, and make the connection between the sampling distribution of a statistic, and its properties as a point estimator.
2). Explain what a confidence interval represents and determine how changes in sample size and confidence level affect the precision of the confidence interval.
3). Find confidence intervals for the population mean and the population proportion (when certain conditions are met), and perform sample size calculations.

Subject:
Statistics and Probability
Material Type:
Module
Provider:
Carnegie Mellon University
Provider Set:
Open Learning Initiative
Date Added:
01/02/2018
Examining Distributions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

1). Summarize and describe the distribution of a categorical variable in context.
2). Generate and interpret several different graphical displays of the distribution of a quantitative variable (histogram, stemplot, boxplot).
3). Summarize and describe the distribution of a quantitative variable in context: a) describe the overall pattern, b) describe striking deviations from the pattern.
4). Relate measures of center and spread to the shape of the distribution, and choose the appropriate measures in different contexts.
5). Compare and contrast distributions (of quantitative data) from two or more groups, and produce a brief summary, interpreting your findings in context.
5). Apply the standard deviation rule to the special case of distributions having the "normal" shape.

Subject:
Statistics and Probability
Material Type:
Module
Provider:
Carnegie Mellon University
Provider Set:
Open Learning Initiative
Date Added:
12/29/2017
Glucose Dilution Problem
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

In this activity, students use the virtual lab to create a 0.025M glucose solution from a standard 1M glucose solution. First, they calculate the correct volumes of 1M glucose solution and water to mix together to create the final 0.025M solution. Next, they prepare the solution using the appropriate glassware. Students can check to see if their procedure was correct using the concentration viewer in the solution info panel.

Subject:
Chemistry
Material Type:
Activity/Lab
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Date Added:
02/05/2021
Making Stock Solutions from Solids
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

In this activity, students use the virtual lab to create stock solutions starting from solid salts. Students must first calculate the correct amount of solid to make the solution. Next, they prepare the solution using the appropriate glassware. Students can check to see if their procedure was correct using the concentration viewer in the solution info panel.

Subject:
Chemistry
Material Type:
Activity/Lab
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Date Added:
02/05/2021
Meals-Ready-To-Eat Scenario
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

You and a friend are hiking the Appalachian Trail when a storm comes through. You stop to eat, but find that all available firewood is too wet to start a fire. From your Chem 106 class, you remember that heat is given off by some chemical reactions; if you could mix two solutions together to produce an exothermic reaction, you might be able to cook the food you brought along for the hike. Luckily, being the dedicated chemist that you are, you never go anywhere without taking along a couple chemical solutions called X and Y just for times like this. The Virtual Lab contains solutions of compounds X and Y of various concentrations.

Subject:
Chemistry
Material Type:
Activity/Lab
Homework/Assignment
Lesson Plan
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Author:
Dr. David Yaron
Date Added:
02/16/2011
Measuring the heat capacity of an engine coolant.
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

As an analytical chemist at a company developing new engine coolants your task is to determine the heat capacity of a newly developed product and then to determine if its heat capacity is greater of less than that of ethylene glycol.

Subject:
Chemistry
Material Type:
Activity/Lab
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Date Added:
02/05/2021
The Mole
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

You probably remember the mole from high school chemistry, but do you remember why it is useful to chemists? The goal of the following video is to give the "big picture" of the mole and its applications; information on how to use the mole in calculations can be found in another tutorial. Throughout this course, we will use the term "molecular weight" to refer to the mass of a mole of a substance (for instance, the molecular weight of oxygen (O2) is 32 g/mol). Recent textbooks refer to this as "molar mass" to emphasize (i) that this term refers to the mass, not the weight, of substance, and (ii) that the quantity refers to a mole of a substance, not a single molecule. "Molecular weight" may be less precise, but it remains the term that most practicing chemists use in the laboratory. For this reason, we continue to use "molecular weight" in this course.

Subject:
Chemistry
Material Type:
Homework/Assignment
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Author:
Dr. David Yaron
Date Added:
02/16/2011
Ozone Scenario
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

During the first kinetics lecture, we traced the efforts of atmospheric chemists to explain the depletion of ozone in the upper atmosphere. (The powerpoint slides have been posted on Blackboard for your review.) U2 spy planes gathered much of the initial data that linked ClO in the stratosphere to the ozone depletion. The data collected during these flights showed the concentrations of various chemical species in the stratosphere, but did not measure how fast the processes were occurring. To determine the kinetics (rates) of ozone depletion reactions, chemists perform controlled laboratory studies. In this homework, we will interpret data obtained from such laboratory experiments to study the ozone depletion reaction.

Subject:
Chemistry
Material Type:
Homework/Assignment
Lecture Notes
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Author:
Dr. David Yaron
Date Added:
02/16/2011