Updating search results...

Search Resources

35 Results

View
Selected filters:
  • fluids
Measuring Viscosity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students calculate the viscosity of various household fluids by measuring the amount of time it takes marble or steel balls to fall given distances through the liquids. They experience what viscosity means, and also practice using algebra and unit conversions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael A. Soltys
Date Added:
09/18/2014
Physical Science II online simulation as quiz - Fluid Mechanics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This is a quiz designed to accompany the online simulation "Under Pressure," which is part of the PhET Interactive Simulations of the University of Colorado Boulder.The quiz was designed for Canvas. Each question includes instructions for an action the student is to complete in the online simulation, followed by a multiple choice question. 

Subject:
Physics
Material Type:
Lesson Plan
Author:
Brian Cushing
Date Added:
06/10/2019
Pressure and Pascal's principle (part 1)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Sal explains the difference between liquids and gasses (both fluids). He then starts a calculation of the work done on a liquid in a U-shaped container. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
06/01/2021
Pressure and Pascal's principle (part 2)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Sal finishes the calculation of work to determine the mechanical advantage in a U-shaped tube. He also explains pressure and Pascal's Principle. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
06/01/2021
Principles of Applied Mathematics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

18.311 Principles of Continuum Applied Mathematics covers fundamental concepts in continuous applied mathematics, including applications from traffic flow, fluids, elasticity, granular flows, etc. The class also covers continuum limit; conservation laws, quasi-equilibrium; kinematic waves; characteristics, simple waves, shocks; diffusion (linear and nonlinear); numerical solution of wave equations; finite differences, consistency, stability; discrete and fast Fourier transforms; spectral methods; transforms and series (Fourier, Laplace). Additional topics may include sonic booms, Mach cone, caustics, lattices, dispersion, and group velocity.

Subject:
Algebra
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Rosales, Rodolfo
Date Added:
02/01/2014
Project Laboratory
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an engineering laboratory subject for mechanical engineering juniors and seniors. Major emphasis is on interplay between analytical and experimental methods in solution of research and development problems. Communication (written and oral) of results is also a strong component of the course. Groups of two or three students work together on three projects during the term.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Cheng, Wai
Hart, Douglas
Date Added:
02/01/2009
Specific gravity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video David explains what specific gravity means. He also shows how to calculate the value for specific gravity and use it to determine the percent of an object that will be submerged while floating.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
David SantoPietro
Date Added:
06/01/2021
Unified Engineering I, II, III, & IV
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subject:
Applied Science
Business and Communication
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Craig, Jennifer
Drela, Mark
Hall, Steven
Lagace, Paul
Lundqvist, Ingrid
Naeser, Gustaf
Perry, Heidi
Radovitzky, Raúl
Waitz, Ian
Young, Peter
Date Added:
09/01/2005
Viscous Fluids
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the similarities and differences in the behaviors of elastic solids and viscous fluids. Several types of fluid behaviors are described Bingham plastic, Newtonian, shear thinning and shear thickening along with their respective shear stress vs. rate of shearing strain diagrams. In addition, fluid material properties such as viscosity are introduced, along with the methods that engineers use to determine those physical properties.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Michael A. Soltys
Date Added:
09/18/2014
Volume flow rate and equation of continuity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Sal introduces the notion of moving fluids and laminar flow. Then he uses the incompressibility of a liquid to show that the volume flow rate (flux) must remain constant. Sal then derives the equation of continuity in terms of the area and speed. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
06/01/2021
What Makes an Eruption Explosive?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the underlying factors that can contribute to Plinian eruptions (which eject large amounts of pumice, gas and volcanic ash, and can result in significant death and destruction in the surrounding environment), versus more gentle, effusive eruptions. Students explore two concepts related to the explosiveness of volcanic eruptions, viscosity and the rate of degassing, by modelling the concepts with the use of simple materials. They experiment with three fluids of varying viscosities, and explore the concept of degassing as it relates to eruptions through experimentation with carbonated beverage cans. Finally, students reflect on how the scientific concepts covered in the activity connect to useful engineering applications, such as community evacuation planning and implementation, and mapping of safe living zones near volcanoes. A PowerPoint® presentation and student worksheet are provided.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Austin Blaser
Helge Gonnermann
Nathan Truong
Thomas Giachetti
Date Added:
02/07/2017