Updating search results...

Search Resources

12 Results

View
Selected filters:
  • WY.SCI.HS.PS3.4 - Plan and conduct an investigation to provide evidence that the transfe...
Energy Forms and Changes
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation lets learners explore how heating and cooling adds or removes energy. Use a slider to heat blocks of iron or brick to see the energy flow. Next, build your own system to convert mechanical, light, or chemical energy into electrical or thermal energy. (Learners can choose sunlight, steam, flowing water, or mechanical energy to power their systems.) The simulation allows students to visualize energy transformation and describe how energy flows in various systems. Through examples from everyday life, it also bolsters understanding of conservation of energy. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Emily Moore
John Blanco
Kathy Perkins
Noah Podolefsky
Trish Loeblein
Date Added:
04/25/2013
Energy and Chemical Change
Unrestricted Use
CC BY
Rating
0.0 stars

This lab is designed to help students understand the nanoscale effect of various energy inputs on the crystal lattice of a smart material, Nitinol. 

Subject:
Chemistry
Material Type:
Activity/Lab
Author:
Integrated Nanosystems Development Institute (INDI)
Date Added:
07/07/2021
Heat Transfer: No Magic About It
Read the Fine Print
Educational Use
Rating
0.0 stars

Heat transfer is an important concept that is a part of everyday life yet often misunderstood by students. In this lesson, students learn the scientific concepts of temperature, heat and the transfer of heat through conduction, convection and radiation. These scientific concepts are illustrated by comparison to magical spells used in the Harry Potter stories.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bradley Beless
Jeremy Ardner
Date Added:
09/18/2014
High School Integrated Physics and Chemistry Course
Unrestricted Use
CC BY
Rating
0.0 stars

The High School Integrated Conceptual Science Program (ICSP) is a NGSS-aligned curriculum that utilizes the conceptual progressions model for bundling of the NGSS, High School Conceptual Model Course 1 and strategies from Ambitious Science Teaching (AST) to focus on teaching practices needed to engage students in science discourse and learning. Course 1 is the High School Integrated Physics and Chemsitry Course.   The goal of these units is to encourage students to continue in STEM by providing engaging and aligned curriculum. The focus of this year long course is on the first year of high school (freshman).  While the course is designed to be taught as a collection of the units, each unit could be taught as a separate unit in a science course.  A video about the new course shared its unique approach to learning and teaching. Wenatchee School District, one of the participating districts, wanted a way to share the program with the community. https://youtu.be/9AGk19YUi2oCourse 1 of the ICSP development was funded by Northwest Earth and Space Sciences Pipeline (NESSP) which is funded through the NASA Science Mission Directorate and housed with Washington NASA Space Grant Consortium at the University of Washington.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Assessment
Full Course
Lesson
Module
Unit of Study
Author:
Carissa Haug
MECHELLE LALANNE
Date Added:
06/01/2020
How an Enhanced Geothermal System Works
Read the Fine Print
Rating
0.0 stars

This animation illustrates how heat energy from deep in Earth can be utilized to generate electricity at a large scale.

Subject:
Applied Science
Career and Technical Education
Environmental Studies
Geoscience
Physical Science
Technology
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
U.S. Department of Energy
Date Added:
10/27/2014
Insulation Materials Investigation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students test the insulation properties of different materials by timing how long it takes ice cubes to melt in the presence of various insulating materials. Students learn about the role that thermal insulation materials can play in reducing heat transfer by conduction, convection and radiation, as well as the design and implementation of insulating materials in construction and engineering.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marissa H. Forbes
Robert McKinney
Date Added:
09/18/2014
NCESD Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

The Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry is a three dimensional course based on the Conceptual Progression Model of the Next Generation Science Standards. It is designed to be used as part of a three course program that addresses all high school science performance expectations. Course 1 is designed for ninth grade students.
This resource includes the teacher materials, supporting documents, and short videos to support teachers in using the materials.
The Courses were designed using the Ambitious Science Teaching (AST) framework. It is strongly encouraged that before using these materials that you be familiar with AST. We suggest that you watch the AST Overview short video found here: https://datapuzzles.org/ambitious-science-teaching and explore this Google Slide deck that contains many resources designed to further your understanding of AST: https://docs.google.com/presentation/d/1WOUVmlm636_7i2l0GYa9JkX1TCK3NMdySfpxKN7IM7A/edit?usp=sharing

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Author:
Carissa Haug
Lisa Monahan
Mechelle LaLanne
NCESD contributors
Date Added:
04/13/2021
Newton's Law of Cooling
Read the Fine Print
Educational Use
Rating
0.0 stars

Students come to see the exponential trend demonstrated through the changing temperatures measured while heating and cooling a beaker of water. This task is accomplished by first appealing to students' real-life heating and cooling experiences, and by showing an example exponential curve. After reviewing the basic principles of heat transfer, students make predictions about the heating and cooling curves of a beaker of tepid water in different environments. During a simple teacher demonstration/experiment, students gather temperature data while a beaker of tepid water cools in an ice water bath, and while it heats up in a hot water bath. They plot the data to create heating and cooling curves, which are recognized as having exponential trends, verifying Newton's result that the change in a sample's temperature is proportional to the difference between the sample's temperature and the temperature of the environment around it. Students apply and explore how their new knowledge may be applied to real-world engineering applications.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Karl Abdelnour
Nicole Abaid
Robert Eckhardt
Date Added:
09/18/2014
Patterns Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Our Patterns Chemistry development team of teacher leaders has been working hard through the spring and summer of 2020 to develop distance learning versions of the Patterns Chemistry units. Between March and May they released the below Distance Learning versions of units 4, 5 and 6, as well as paper packets that can be printed for students who do not have access to technology at home. Below are the distance learning version of units 1 and unit 2. The distance learning units can be used in either a fully online or hybrid school model. A Distance Learning version of Unit 3 will be released by the end of September. For schools reopening fully in person, scroll down to see the original Patterns Chemistry unit plans.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Portland STEM Partnership
Date Added:
09/03/2020
PhET Heat Transfer Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Students will use the Phet Energy Forms and Changes simulations to design experiments.  The evidence from the experiments is used to support answers/explanations to the following questions:Does heat flow from hot to cold or cold to hot?What are some things that affect the rate of heat flow?Does an object get hot all at once or does the heat spread slowly from one place to another? 

Subject:
Physics
Material Type:
Activity/Lab
Simulation
Author:
Tiffany Swenson
Date Added:
04/16/2020
To Heat or Not to Heat?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to various types of energy with a focus on thermal energy and types of heat transfer as they are challenged to design a better travel thermos that is cost efficient, aesthetically pleasing and meets the design objective of keeping liquids hot. They base their design decisions on material properties such thermal conductivity, cost and function. These engineering and science concepts are paired with student experiences to build an understanding of heat transfer as it plays a role in their day-to-day lives. While this introduction only shows the top-level concepts surrounding the mathematics associated with heat transfer; the skills become immediately useful as students apply what they know to solve an engineering challenge.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Herring
Date Added:
09/18/2014
What Works Best in a Radiator?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the importance of heat transfer and heat conductance. Using hot plates, student groups measure the temperature change of a liquid over a set time period and use the gathered data to calculate the heat transfer that occurs. Then, as if they were engineers, students pool their results to discuss and determine the best fluid to use in a car radiator.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bradley Beless
Jeremy Ardner
Date Added:
09/18/2014