Updating search results...

Search Resources

51 Results

View
Selected filters:
  • newton
Solar Sails: The Future of Space Travel
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, define, ideate, prototype, test, redesign—to design and test small-scale solar sails for satellites and space probes. During the process, learn about Newton’s laws of motion and the transfer of energy from wave energy to mechanical energy. A student activity worksheet is provided.

Subject:
Career and Technical Education
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Matthew Bentley
Date Added:
02/07/2017
Strawkets and Thrust
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that thrust has on rocket flight. Students will make two paper rockets that they can launch themselves by blowing through a straw. These "strawkets" will differ in diameter, such that students will understand that a rocket with a smaller exit nozzle will provide a larger thrust. Students have the opportunity to compare the distances traveled by their two strawkets after predicting where they will land. Since each student will have a slightly different rocket and launching technique, they will observe which factors contribute to a strawket's thrust and performance.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Swinging with Style
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experientially learn about the characteristics of a simple physics phenomenon the pendulum by riding on playground swings. They use pendulum terms and a timer to experiment with swing variables. They extend their knowledge by following the steps of the engineering design process to design timekeeping devices powered by human swinging.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ashleigh Bailey
Denise W. Carlson
Malinda S. Zarske
Megan Podlogar
Date Added:
10/14/2015
Toward the Scientific Revolution
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject traces the evolution of ideas about nature, and how best to study and explain natural phenomena, beginning in ancient times and continuing through the Middle Ages and the Renaissance. A central theme of the subject is the intertwining of conceptual and institutional relations within diverse areas of inquiry: cosmology, natural history, physics, mathematics, and medicine.

Subject:
Arts and Humanities
History
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kaiser, David
Date Added:
09/01/2003
Train of Thought
Read the Fine Print
Rating
0.0 stars

This OLogy activity first introduces kids to the idea of thought experiments. Then it puts their scientific creativity to work with two mind-bending experiments that rely solely on imagination. Both thought experiments have background information, plus concrete examples of how to approach the experiment. Specifically, they ask:Can you throw a ball so hard it never falls to Earth?What if light could only travel one foot/second?

Subject:
Astronomy
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
American Museum of Natural History
Provider Set:
American Museum of Natural History
Date Added:
02/16/2011
Up, Up and Away! - Airplanes
Read the Fine Print
Educational Use
Rating
0.0 stars

The airplanes unit begins with a lesson on how airplanes create lift, which involves a discussion of air pressure and how wings use Bernoulli's principle to change air pressure. Next, students explore the other three forces acting on airplanes thrust, weight and drag. Following these lessons, students learn how airplanes are controlled and use paper airplanes to demonstrate these principles. The final lessons addresses societal and technological impacts that airplanes have had on our world. Students learn about different kinds of airplanes and then design and build their own balsa wood airplanes based on what they have learned.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Variational Principles in Classical Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th – 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.

This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
University of Rochester
Author:
Douglas Cline
Date Added:
01/08/2019
What Are Newton's Laws?
Read the Fine Print
Educational Use
Rating
0.0 stars

Through a series of three lessons and one activity, students are introduced to inertia, forces and Newton's three laws of motion. For each lesson, a combination of class demonstrations and PowerPoint® presentations are used to explain, show and relate the concepts to engineering. Lesson 1 starts with inertia, forces and Newton's first law of motion. Lesson 2 builds on lesson 1 with s review and then introduces Newton's second law of motion. Lesson 3 builds on the previous two lessons with a review and then introduces Newton's third law of motion. In a culminating activity, students apply their knowledge of forces, friction, acceleration and gravity in an experiment to measure the average acceleration of a textbook pulled along a table by varying weights, and then test the effects of friction on different surfaces.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elizabeth Anthony
Jacob Teter
Scott Strobel
Date Added:
09/18/2014
What Is Newton's First Law?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of force, inertia and Newton's first law of motion: objects at rest stay at rest and objects in motion stay in motion unless acted upon by an unbalanced force. Examples of contact and non-contact types of forces are provided, specifically applied, spring, drag, frictional forces, and magnetic, electric, gravitational forces. Students learn the difference between speed, velocity and acceleration, and come to see that the change in motion (or acceleration) of an object is caused by unbalanced forces. They also learn that engineers consider and take advantage of these forces and laws of motion in their designs. Through a PowerPoint® presentation and some simple teacher demonstrations these fundamental science concepts are explained and illustrated. This lesson is the first in a series of three lessons that are intended to be taught as a unit.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elizabeth Anthony
Jacob Teter
Scott Strobel
Date Added:
09/18/2014
What Is Newton's Second Law?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to Newton's second law of motion: force = mass x acceleration. After a review of force, types of forces and Newton's first law, Newton's second law of motion is presented. Both the mathematical equation and physical examples are discussed, including Atwood's Machine to illustrate the principle. Students come to understand that an object's acceleration depends on its mass and the strength of the unbalanced force acting upon it. They also learn that Newton's second law is commonly used by engineers as they design machines, structures and products, everything from towers and bridges to bicycles, cribs and pinball machines. This lesson is the second in a series of three lessons that are intended to be taught as a unit.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elizabeth Anthony
Jacob Teter
Scott Strobel
Date Added:
09/18/2014
You're a Pushover!
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this activity is to demonstrate Newton's 3rd Law of Motion, which is the physical law that governs thrust in aircraft. The students will do several activities that show that for every action there is an equal and opposite reaction.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015