Updating search results...

Search Resources

39 Results

View
Selected filters:
  • drag
May the Force Be With You: Lift
Read the Fine Print
Educational Use
Rating
0.0 stars

Students revisit Bernoulli's Principle (Lesson 1 of the Airplanes unit) and learn how engineers use this principle to design airplane wings. Airplane wings create lift by changing the pressure of the air around it. This is the first of four lessons exploring the four key forces in flight: lift, weight, thrust and drag.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Measuring Viscosity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students calculate the viscosity of various household fluids by measuring the amount of time it takes marble or steel balls to fall given distances through the liquids. They experience what viscosity means, and also practice using algebra and unit conversions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael A. Soltys
Date Added:
09/18/2014
Puttin' It All Together
Read the Fine Print
Educational Use
Rating
0.0 stars

On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Renewable Energy Design: Wind Turbines
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS
Gisselle Cunningham
Lindrick Outerbridge
Russell Holstein
Date Added:
02/17/2017
STEM in 30: Taking the Fast Lane to Orbit: The Technology of Rockets and Race Cars
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Join us on STEM in 30 from the NASCAR Hall of Fame in Charlotte, North Carolina and look at the crossover between space, air and car forces and technologies.

Subject:
Applied Science
Physical Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
02/28/2017
Soaring in The Wind: The Science of Kite Flying
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Flying kites is a popular hobby in Malaysia and very much part of the culture. This lesson looks at kite flying science to introduce basic ideas related to the dynamics of kite flying and can be used as an extension of a physics lesson, especially after the students have learned about forces. It will focus on some of the concepts such as weight, thrust, lift and drag. It is a fun way to introduce the forces acting upon a kite and the scientific principles that allow a kite to fly. The lesson is suitable for students in secondary school. It will help students relate to the effect of forces and gives an introduction to the science of flight. As an added value, the video will also share some information about Malaysian kites which are “tailless”. The Malaysian kite is called “Wau” (pronounced “wow”), and there are many distinctive designs since each Malaysian state has its own official Wau. Malaysia has 14 states. The break activities included are to be conducted in the classroom, and students are to work in small groups on the questions given in the lesson. Students are to carry out two simple experiments to study how air flows on a kite.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Roselainy Binti Abdul Rahman, Habibah Norehan Binti Hj Haron, Nor Azizi Binti Mohamed, Salwani Binti Mohd. Daud, Norzaida Binti Abas, Hafiza Binti Abas
Date Added:
02/13/2015
Strawkets and Control
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that fins have on rocket flight. Students construct two paper rockets that they can launch themselves by blowing through a straw. One "strawket" has wings and the other has fins. Students observe how these two control surfaces affect the flight of their strawkets. Students discover how difficult control of rocket flight is and what factors can affect it.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Street-Fighting Mathematics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course teaches the art of guessing results and solving problems without doing a proof or an exact calculation. Techniques include extreme-cases reasoning, dimensional analysis, successive approximation, discretization, generalization, and pictorial analysis. Applications include mental calculation, solid geometry, musical intervals, logarithms, integration, infinite series, solitaire, and differential equations. (No epsilons or deltas are harmed by taking this course.) This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subject:
Calculus
Mathematics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Mahajan, Sanjoy
Date Added:
01/01/2008
Take Off with Paper Airplanes
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the art of designing an airplane through paper airplane constructions. The goal is that students will learn important aircraft design considerations and how engineers must iterate their designs to achieve success. Students first follow several basic paper airplane models, after which they will then design their own paper airplane. They will also learn how engineers make models to test ideas and designs.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Up, Up and Away! - Airplanes
Read the Fine Print
Educational Use
Rating
0.0 stars

The airplanes unit begins with a lesson on how airplanes create lift, which involves a discussion of air pressure and how wings use Bernoulli's principle to change air pressure. Next, students explore the other three forces acting on airplanes thrust, weight and drag. Following these lessons, students learn how airplanes are controlled and use paper airplanes to demonstrate these principles. The final lessons addresses societal and technological impacts that airplanes have had on our world. Students learn about different kinds of airplanes and then design and build their own balsa wood airplanes based on what they have learned.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Viking Ship Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

In this design challenge, students learn about the Vikings from an engineering point-of-view. While investigating the history and anatomy of Viking ships, they learn how engineering solutions are shaped by the surrounding environment and availability of resources. Students apply this knowledge to design, build and test their own model Viking ships.

Subject:
Applied Science
Engineering
History
World History
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Water Bottle Rockets
Read the Fine Print
Educational Use
Rating
0.0 stars

What makes rockets fly straight? What makes rockets fly far? Why use water to make the rocket fly? Students are challenged to design and build rockets from two-liter plastic soda bottles that travel as far and straight as possible or stay aloft as long as possible. Guided by the steps of the engineering design process, students first watch a video that shows rocket launch failures and then participate in three teacher-led mini-activities with demos to explore key rocket design concepts: center of drag, center of mass, and momentum and impulse. Then the class tests four combinations of propellants (air, water) and center of mass (weight added fore or aft) to see how these variables affect rocket distance and hang time. From what they learn, student pairs create their own rockets from plastic bottles with cardboard fins and their choices of propellant and center of mass placement, which they test and refine before a culminating engineering field day competition. Teams design for maximum distance or hang time; adding a parachute is optional. Students learn that engineering failures during design and testing are just steps along the way to success.

Subject:
Career and Technical Education
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Duff Harrold
Sara Pace
Date Added:
02/07/2017
What Makes Airplanes Fly?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students begin to explore the idea of a force. To further their understanding of drag, gravity and weight, they conduct activities that model the behavior of parachutes and helicopters. An associated literacy activity engages the class to recreate the Wright brothers' first flight in the style of the "You Are There" television series.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
What a Drag!
Read the Fine Print
Educational Use
Rating
0.0 stars

The purpose of this activity is to demonstrate how drag affects falling objects. Students will make a variety of shapes out of paper and see how size and shape affects the speed with which their paper shapes fall.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
What a Drag! Lesson
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about friction and drag two different forces that convert energy of motion to heat. Both forces can act on a moving object and decrease its velocity. Students learn examples of friction and drag, and suggest ways to reduce the impact of these forces. The equation that governs common frictional forces is introduced, and during a hands-on activity, students experimentally measure a coefficient of friction.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014