By taking a look at the energy of motion all around us, students learn about the types of energy and their characteristics. They first learn about the two simplest forms of mechanical energy: kinetic and potential energy, as illustrated by pendulums and roller coasters. They come to understand that energy can change from one form into another, and be described and determined by equations. Through the example of a waterwheel, the concepts of and differences between work and power are explained and calculated. Conservation of momentum and collisions are explored, with analogies to popular sports (billiards, baseball, golf), and how elastic and inelastic collisions are considered in the games' design. To show another energy transformation concept, the behavior of energy dissipating into heat by means of friction is presented. Students learn to recognize static friction, kinetic friction and drag, how they work, and how to calculate frictional force. A final lesson integrates the energy of motion concepts, showing how they are interconnected in everyday applications such as skateboards, scooters, roller coasters, trains, cars, planes, trucks and elevators. Through numerous hands-on activities, students swing pendulums, use plastic two-liter bottles to construct model waterwheels, bounce different types of balls, use weights to generate friction data, and roll balls down ramps to collide into cups.