High School Geology

12 affiliated resources

High School Geology Collection Resources (12)

View
Selected filters:
Can Earthquakes Be Predicted?
Conditions of Use:
Remix and Share
Rating

This learning video uses a simple analog setup to explore why earthquakes are so unpredictable. The setup is simple enough that students should be able to assemble and operate it on their own with a teacher's supervision. The teaching approach used in this module is known as the 5E approach, which stands for Engagement, Exploration, Explanation, Elaboration, and Evaluation. Over the course of this lesson, the basic mechanisms that give rise to the behavior of the simple analog system are explained, and further elaboration helps the students to apply their understanding of the analog system to complex fault systems that cause earthquakes

Subject:
Geology
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Zach Adam
Date Added:
06/11/2012
Cookie Subduction
Conditions of Use:
Remix and Share
Rating

This is a quick activity that shows how large amounts of rock and sediment are added to the edge of continents during subduction. You may ask, how can such a huge phenomenon be demonstrated quickly and cheaply? The answer is simple: with a cookie!

Subject:
Geology
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Exploratorium
The Exploratorium
Date Added:
11/07/2012
The Crayon Rock Cycle
Conditions of Use:
Remix and Share
Rating

In this activity, learners use crayons to draw conclusions about rocks and the rock cycle. Learners form crayons ((which can be "weathered"--heated, compressed and cooled--like rocks) into models of sedimentary, metamorphic, and igneous rocks.

Subject:
Geology
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Eric Muller
The Exploratorium
Date Added:
11/07/2004
Earthquakes Living Lab: FAQs about P Waves, S Waves and More
Conditions of Use:
Read the Fine Print
Rating

Students learn what causes earthquakes, how we measure and locate them, and their effects and consequences. Through the online Earthquakes Living Lab, student pairs explore various types of seismic waves and the differences between shear waves and compressional waves. They conduct research using the portion of the living lab that focuses primarily on the instruments, methods and data used to measure and locate earthquakes. Using real-time U.S. Geological Survey (USGS) data accessed through the living lab interface, students locate where earthquakes are occurring and how frequently. Students propose questions and analyze the real-world seismic data to find answers and form conclusions. They are asked to think critically about why earthquakes occur and how knowledge about earthquakes can be helpful to engineers. A worksheet serves as a student guide for the activity.

Subject:
Engineering
Geology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Living Lab: Finding Epicenters and Measuring Magnitudes
Conditions of Use:
Read the Fine Print
Rating

Students learn how engineers characterize earthquakes through seismic data. Then, acting as engineers, they use real-world seismograph data and a tutorial/simulation accessed through the Earthquakes Living Lab to locate earthquake epicenters via triangulation and determine earthquake magnitudes. Student pairs examine seismic waves, S waves and P waves recorded on seismograms, measuring the key S-P interval. Students then determine the maximum S wave amplitudes in order to determine earthquake magnitude, a measure of the amount of energy released. Students consider how engineers might use and implement seismic data in their design work. A worksheet serves as a student guide for the activity.

Subject:
Engineering
Geology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Living Lab: Geology and Earthquakes in Japan
Conditions of Use:
Read the Fine Print
Rating

Students study how geology relates to the frequency of large-magnitude earthquakes in Japan. Using the online resources provided through the Earthquakes Living Lab, students investigate reasons why large earthquakes occur in this region, drawing conclusions from tectonic plate structures and the locations of fault lines. Working in pairs, students explore the 1995 Kobe earthquake, why it happened and the destruction it caused. Students also think like engineers to predict where other earthquakes are likely to occur and what precautions might be taken. A worksheet serves as a student guide for the activity.

Subject:
Engineering
Geology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Earthquakes Living Lab: Locating Earthquakes
Conditions of Use:
Read the Fine Print
Rating

Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around the planet to identify where earthquakes occur and look for trends in earthquake activity. They explore where and why earthquakes occur, learning about faults and how they influence earthquakes. Looking at the interactive maps and the data, students use Microsoft® Excel® to conduct detailed analysis of the most-recent 25 earthquakes; they calculate mean, median, mode of the data set, as well as identify the minimum and maximum magnitudes. Students compare their predictions with the physical data, and look for trends to and patterns in the data. A worksheet serves as a student guide for the activity.

Subject:
Geology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
02/17/2017
Geologic Time: The Ticking of Our Planet's 4.6 Billion Year Clock
Conditions of Use:
Remix and Share
Rating

This BLOSSOMS lesson will help students conceptualize the enormity of geologic time and learn about important events in Earth s history. Students will also learn how geologic time can help explain seemingly incomprehensible processes, like the formation of the Himalayan Mountains from a flat plain to their current height, and the evolution of a tiny group of reptiles into enormous dinosaurs. During the breaks, students will construct a geologic timeline of their own in the classroom and do simple calculations to determine how long amounts of time can lead to impressive changes in the height of the Himalayan Mountains and the size of a group of reptiles.

Subject:
Geology
Material Type:
Lecture
Provider:
M.I.T.
Provider Set:
M.I.T. Blossoms
Author:
Phoebe Cohen
Date Added:
10/31/2014
Rock Cycle
Conditions of Use:
Read the Fine Print
Rating

Through five lessons, students are introduced to all facets of the rock cycle. Topics include rock and mineral types, material stresses and weathering, geologic time and fossil formation, the Earth's crust and tectonic plates, and soil formation and composition. Lessons are presented in the context of the related impact on humans in the form of roadway and tunnel design and construction, natural disasters, environmental site assessment for building structures, and measurement instrumentation and tools. Hands-on activities include experiencing tensional, compressional and shear material stress by using only hand force to break bars of soap; preparing Jeopardy-type trivia questions/answers for a class game that reinforces students' understanding of rocks and the rock cycle; creating "fossils" using melted chocolate; working within design constraints to design and build a model tunnel through a clay mountain; and soil sampling by creating tools, obtaining soil cores, documenting a soil profile log, and analyzing the findings to make engineering predictions.

Subject:
Engineering
Geology
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Rock Solid
Conditions of Use:
Read the Fine Print
Rating

Rocks cover the earth's surface, including what is below or near human-made structures. With rocks everywhere, breaking rocks can be hazardous and potentially disastrous to people. Students are introduced to three types of material stress related to rocks: compressional, torsional and shear. They learn about rock types (sedimentary, igneous and metamorphic), and about the occurrence of stresses and weathering in nature, including physical, chemical and biological weathering.

Subject:
Engineering
Geology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacquelyn F. Sullivan
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Seismic Waves: How Earthquakes Move the Earth
Conditions of Use:
Read the Fine Print
Rating

Students learn about the types of seismic waves produced by earthquakes and how they move the Earth. The dangers of earthquakes are presented as well as the necessity for engineers to design structures for earthquake-prone areas that are able to withstand the forces of seismic waves. Students learn how engineers build shake tables that simulate the ground motions of the Earth caused by seismic waves in order to test the seismic performance of buildings.

Subject:
Engineering
Geology
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Take It From The Top: How Does This Stack Up?
Conditions of Use:
Remix and Share
Rating

In this activity, learners explore center of gravity, or balance point, of stacked blocks. Simple wooden blocks can be stacked so that the top block extends completely past the end of the bottom block, seemingly in a dramatic defiance of gravity. A mathematical pattern can be noted in the stacking.

Subject:
Geology
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
06/26/2012