Updating search results...

Search Resources

6 Results

View
Selected filters:
  • integrin
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Cell, Structure and Function of Plasma Membranes, Components and Structure
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Understand the fluid mosaic model of cell membranesDescribe the functions of phospholipids, proteins, and carbohydrates in membranesDiscuss membrane fluidity

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
Immune Cell Migration: On the Move in Response to Pathogens and Cancer Immunotherapy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The mammalian immune system is sometimes called a “liquid organ,” capable of rapidly initiating and then resolving potent responses to pathogens at almost any location in the organism. What protein machinery drives immune cells’ rapid migration? How do cells make pathfinding decisions around barriers? How do they find rare pathogens or target cells in complex environments?
This course will begin by examining the general immunological functions of two major immune cell types—T cells and dendritic cells. Through our readings and discussions, we will examine the connections between immunotherapy as an emerging treatment modality for a variety of cancers and the migration of immune cells.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fessenden, Timothy
Date Added:
09/01/2021
MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Glioblastoma (GBM), an aggressive cancer in the brain or spinal cord, is a devastating diagnosis. Although therapies exist, GBM has a poor prognosis, with a median survival of only 14-15 months after diagnosis. Key to its aggressiveness is the degree to which migrating GBM cells infiltrate adjacent brain tissue. GBM cells express the protein MACC1, which is a marker of metastasis and tumor cell migration. Unfortunately, how GBM cells learn to migrate is unclear. A recent study used live-cell and atomic force microscopy to evaluate cell migration and mechanical properties of GBM cells overexpressing MACC1. The results showed that MACC1 increased the migratory speed and elasticity of GBM cells while it decreased cell-cell adhesion and inhibited aggregation. MACC1-overexpressing cells also had specific increases in protrusive actin, allowing the cells to adhere to laminin..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/30/2020