Search Resources

65 Results

View
Selected filters:
  • Minds-On Activities for Teaching Biology
Alcoholic Fermentation in Yeast – a Bioengineering Design Challenge
Read the Fine Print
Rating

This activity helps students to understand both alcoholic fermentation and the engineering design process. In the first two parts of this activity, students learn about alcoholic fermentation and test for alcoholic fermentation by assessing CO2 production by live yeast cells in sugar water vs. two controls. The third part of this activity presents the bioengineering design challenge where students work to find the optimum sucrose concentration and temperature to maximize rapid CO2 production. Structured questions guide the students through the basic engineering steps. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Cell Membrane Structure and Function
Read the Fine Print
Rating

This activity includes two simple hands-on experiments and numerous analysis and discussion questions which will help students understand how the molecular composition and organization of a cell membrane result in its selective permeability. Specific topics covered include ions, polar molecules and nonpolar molecules; simple diffusion through the phospholipid bilayer; facilitated diffusion through ion channels or carrier proteins; active transport; exocytosis and endocytosis. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Cell Structure and Function Lessons
Read the Fine Print
Rating

This overview presents key concepts that students often do not learn from standard textbook presentations and suggests a sequence of learning activities to help students understand how the parts of a cell work together to accomplish the multiple functions of a dynamic living cell. Suggested activities also reinforce student understanding of the relationships between molecules, organelles and cells, the diversity of cell structure and function, and the importance and limitations of diffusion. This overview provides links to Web resources, hands-on activities and discussion activities.

Subject:
Life Science
Material Type:
Activity/Lab
Game
Lesson Plan
Unit of Study
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Cell Vocabulary Review Game
Read the Fine Print
Rating

This game helps students to enjoy reviewing vocabulary related to cells, organelles, and the plasma membrane. Each card in the deck has a target vocabulary word and two related taboo words that the student may not use when giving clues so the other students in his or her small group can guess the target word. Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms.

Subject:
Life Science
Material Type:
Game
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Cellular Respiration and Photosynthesis Lessons
Read the Fine Print
Rating

This overview of energy, cellular respiration and photosynthesis summarizes important concepts and common misconceptions. It also suggests a sequence of learning activities to overcome misconceptions, develop student understanding of important concepts, and relate these concepts to familiar topics such as breathing, food, body weight, and plant growth.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Unit of Study
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
DNA
Read the Fine Print
DNA
Rating

In this activity, students extract DNA from Archaea or from their cheek cells. Students learn key concepts about DNA function during the intervals required for the extraction procedure. Student understanding of DNA structure, function and replication is further developed by additional analysis and discussion questions and hands-on modeling of DNA replication. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Data Set
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
DNA Structure, Function and Replication
Read the Fine Print
Rating

This analysis and discussion activity can be used to introduce your students to key concepts about DNA structure, function and replication or to review these topics. This activity includes hands-on modeling of DNA replication.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Diffusion and Cell Size and Shape
Read the Fine Print
Rating

This minds-on analysis and discussion activity helps students understand that cell size is limited by the very slow rate of diffusion over any substantial distance and the insufficient surface-area-to-volume ratio for larger cells. In addition, students calculate why these problems do not apply to long slender cells or parts of cells (e.g. the axons of neurons that extend from your spinal cord to your foot). To maximize student participation and learning, I recommend that you have your students complete the questions individually or in pairs and then have a whole class discussion.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Dragon Genetics -- Independent Assortment and Gene Linkage
Read the Fine Print
Rating

Students learn the principles of independent assortment and gene linkage in activities which analyze inheritance of multiple genes on the same or different chromosomes in hypothetical dragons. Students learn how these principles derive from the behavior of chromosomes during meiosis and fertilization.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Lesson Plan
Simulation
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Dragon Genetics -- Understanding Inheritance
Read the Fine Print
Rating

In this simulation activity students mimic the processes of meiosis and fertilization to investigate the inheritance of multiple genes and then use their understanding of concepts such as dominant/recessive alleles, incomplete dominance, sex-linked inheritance, and epistasis to interpret the results of the simulation. This activity can be used as a culminating activity after you have introduced classical genetics, and it can serve as formative assessment to identify any areas of confusion that require additional clarification.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Lesson Plan
Simulation
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Bob Farber
Date Added:
11/05/2014
Enzymes Help Us Digest Food
Read the Fine Print
Rating

Students learn about enzyme function, enzyme specificity, and the molecular basis of lactose intolerance through experiments with the enzyme lactase and analysis and discussion questions. Students engage in the scientific practices of designing and carrying out experiments and interpreting data. This activity is aligned with the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Evolution and Adaptations
Read the Fine Print
Rating

In common experience, the term "adapting" usually refers to changes during an organism's lifetime. In contrast, evolutionary biologists use the term "adaptation" to refer to a heritable trait that increases fitness. To help students reconcile these different concepts, this activity introduces the concept of phenotypic plasticity (the ability of an organism to adapt to different environments within its lifetime). Questions guide students in analyzing how the balance between the advantages and disadvantages of a characteristic (e.g. an animal's color) can vary in different circumstances, how phenotypic plasticity can be a heritable trait that can optimize fitness in a variable environment, and how natural selection can influence the amount of phenotypic plasticity in a population. This activity is designed to help high school students meet the Next Generation Science Standards and the Common Core State Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Evolution as Reproduction with Variability
Read the Fine Print
Rating

In this online activity, learners discover how random variation influences biological evolution. Biological evolution is often thought of as a process by which adaptation is generated through selection.Œć While it is recognized that random variation underlies the process, emphasis is usually placed on selection and resulting adaptation, leaving a sense that it is selection that drives evolution.Œć This simulation highlights the creative role of random variation, offering a somewhat different perspective: that of evolution as open-ended exploration driven by randomness and constrained by selection, with adaptation as a dynamic, transient consequence rather than an objective.

Subject:
Life Science
Anthropology
Material Type:
Activity/Lab
Simulation
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Date Added:
11/09/2012
Evolution by Natural Selection
Read the Fine Print
Rating

Students develop their understanding of natural selection by analyzing specific examples and carrying out a simulation. The questions in the first section introduce students to the basic process of natural selection, including key concepts and vocabulary. The second section includes a simulation activity, data analysis, and questions to deepen students' understanding of natural selection, including the conditions that are required for natural selection to occur. In the third section, students interpret evidence concerning natural selection in the peppered moth and answer questions to consolidate a scientifically accurate understanding of the process of natural selection, including the role of changes in allele frequency. This activity is aligned with the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Interactive
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Food, Energy and Body Weight
Read the Fine Print
Rating

This minds-on analysis and discussion activity helps students to understand the relationships between food molecules as a source of energy, cellular respiration, physical activity, and changes in body weight.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
From Gene to Protein -- Transcription and Translation
Read the Fine Print
Rating

In this hands-on activity students learn how a gene provides the instructions for making a protein, and how genes can cause albinism or sickle cell anemia. Simple paper models are used to simulate the molecular processes of transcription and translation. This activity can be used to introduce students to these topics or to reinforce student understanding. In addition, students evaluate the advantages and disadvantages of different types of models included in this activity.

Subject:
Life Science
Material Type:
Activity/Lab
Interactive
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Genetic Engineering Challenge - Preventing Vitamin A Deficiency
Read the Fine Print
Rating

"Genetic Engineering Challenge - How can scientists develop a type of rice that could prevent vitamin A deficiency?" is an analysis and discussion activity. This activity begins with an introduction to vitamin A deficiency, rice seeds, and genetic engineering. Next, several questions challenge students to design a basic plan that could produce a genetically engineered rice plant that makes rice grains that contain pro-vitamin A. Subsequent information and questions guide students in developing an understanding of the basic techniques of genetic engineering. Students use fundamental molecular biology concepts as they think about how to solve a practical problem. This activity can be used to introduce students to genetic engineering or to reinforce basic understanding of genetic engineering.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Genetics
Read the Fine Print
Rating

This activity begins with sections that help students to understand basic principles of genetics, including (1) how genotype influences phenotype via the effects of genes on protein structure and function and (2) how genes are transmitted from parents to offspring through the processes of meiosis and fertilization. Then, a coin flip activity models the probabilistic nature of inheritance and Punnett square predictions; this helps students understand why the characteristics of children in many real families deviate from Punnett square predictions. Additional concepts covered include polygenic inheritance, incomplete dominance, and how a new mutation can result in a genetic condition that was not inherited. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Lesson Plan
Simulation
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Scott Poethig
Date Added:
11/05/2014
Genetics Concepts and Activities
Read the Fine Print
Rating

These lessons demonstrate how a good understanding of mitosis, meiosis and fertilization and a basic understanding of the roles of DNA and proteins can provide the basis for understanding genetics. Important genetics concepts for students to learn are summarized and multiple learning activities are suggested to help students understand Punnett squares, pedigrees, dominant/recessive alleles, X-linked recessive alleles, incomplete dominance, co-dominance, test crosses, independent assortment, genetic linkage, polygenic inheritance, etc. This overview provides links to suggested activities which include hands-on simulation and laboratory activities, analysis of class data, review games and discussion activities and questions.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Game
Lesson Plan
Unit of Study
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Genetics Vocabulary Review Game
Read the Fine Print
Rating

This game helps students to enjoy reviewing genetics vocabulary. Each card in the deck has a target vocabulary word and two related taboo words that the student may not use when giving clues so the other students in his or her small group can guess the target word. Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms.

Subject:
Life Science
Genetics
Material Type:
Game
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Get the Lead Out! Game
Read the Fine Print
Rating

This board game reinforces learning about the sources and biological hazards of lead exposure. The first file has the game and the second file has teacher notes, including background information on lead.

Subject:
Life Science
Material Type:
Game
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Edison Freire
Ingrid Waldron
Date Added:
11/05/2014
Golden Rice - Evaluating the Pros and Cons
Read the Fine Print
Rating

This activity engages students in evaluating the evidence and arguments related to Golden Rice and other possible strategies for preventing vitamin A deficiency. Students use this information to develop evidence-based conclusions about Golden Rice and the prevention of vitamin A deficiency. Students also develop questions that could provide important additional information for evaluating the arguments in favor of and opposed to Golden Rice and related policy proposals. In addition, students analyze how two reasonably accurate articles can present totally opposing points of view on this complex policy issue.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
HIV/AIDS - Molecular and Evolutionary Biology
Read the Fine Print
Rating

This analysis and discussion activity introduces students to the biology of HIV infection and treatment, including the molecular biology of the HIV virus life cycle and the importance of understanding molecular biology and natural selection for developing effective treatments. The questions in this activity challenge students to apply their understanding of basic molecular and cellular biology and natural selection and interpret the information presented in prose and diagrams in order to understand multiple aspects of the biology of HIV/AIDS and treatment.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Hands-on Activities for Teaching Biology
Read the Fine Print
Rating

These hands-on, minds-on activities engage students in experiments or simulation activities and incorporate multiple questions designed to foster student understanding of important concepts in the life sciences. Topics covered include biological molecules, diffusion, metabolism, cell division, genetics, molecular biology, evolution, diversity, human physiology and design and interpretation of experiments. These activities were designed for teaching high school or middle school students, but many of these activities can also be used in non-major introductory college biology classes. To accommodate limited budgets, most of these activities can be carried out with minimum equipment and expense for supplies. Additional minds-on activities for teaching biology, including discussion activities, are available at http://serendip.brynmawr.edu/exchange/bioactivities. Most of the activities are described in student handouts and teacher notes; the student handouts are available as Word files for teachers to customize for their students.

Subject:
Life Science
Material Type:
Activity/Lab
Interactive
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Homeostasis and Negative Feedback – Concepts and Breathing Experiments
Read the Fine Print
Rating

This minds-on, hands-on activity begins with analysis and discussion questions that develop student understanding of homeostasis and negative feedback and the differences between negative and positive feedback. Next, students develop a model of negative feedback regulation of blood levels of CO2 and O2 as they learn or review basic information about cellular respiration and basic physiology of the respiratory and circulatory systems. Then, students carry out an experiment to test their negative feedback model and analyze the data. In a final optional section, students develop and carry out an independent investigation. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
How Do Biological Organisms Use Energy?
Read the Fine Print
Rating

This analysis and discussion activity introduces students to the basic principles of how biological organisms use energy. The focus is on understanding the roles of ATP and cellular respiration. In addition, students apply the principles of conservation of energy and conservation of matter to avoid common errors and correct common misconceptions. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
How Mistakes in Cell Division Can Result in Down Syndrome and Miscarriages
Read the Fine Print
Rating

This analysis and discussion activity reinforces student understanding of the process of meiosis and the importance of having exactly the right number of copies of each chromosome in our body's cells. This activity also helps students to understand that miscarriages are often the result of genetic abnormalities and that genetic conditions sometimes are not inherited (e.g. Down syndrome due to meiotic nondisjunction). Optional additional questions can be used to promote student understanding of sex chromosome abnormalities and X chromosome inactivation.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
How could complex eyes have evolved?
Read the Fine Print
Rating

In this activity, students analyze evidence from comparative anatomy, mathematical modeling, and molecular biology. This evidence suggests a likely sequence of steps in the evolution of the human eye and the octopus eye.  General concepts used to interpret this evidence include natural selection, fitness, and the difference between homology (similarity due to common descent) and analogy (similarity due to convergent evolution). This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
How do we sense the flavors of food?
Read the Fine Print
Rating

Students develop a basic understanding of how taste and olfactory receptor cells function and how sensory messages to the brain contribute to flavor perception and flavor-related behavior. Students plan a hands-on investigation, carry out the investigation, analyze the data, and interpret the results. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Introduction to Osmosis
Read the Fine Print
Rating

In Part I of this hands-on, minds-on activity, students investigate the effects of hypotonic and hypertonic solutions on eggs. Students interpret their results and develop a basic molecular understanding of the process of osmosis. In Part II, analysis and discussion questions guide students as they further develop their understanding of osmosis and apply this understanding to the interpretation of several “real-world” phenomena. This activity is aligned with the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Amy Dewees
Ingrid Waldron
Date Added:
11/05/2014
Invertebrate Diversity
Read the Fine Print
Rating

In this introduction to invertebrate diversity, students compare the external anatomy and locomotion of earthworms, mealworms, crickets and crayfish, all of which can be purchased at low cost from local pet stores. Discussion questions help students understand the evolutionary basis of observed similarities and differences. This activity can be used as an introduction to the Annelid and Arthropod phyla and the principle that form matches function.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Learning about Genetic Disorders
Read the Fine Print
Rating

This activity provides brief instructions and recommended reliable sources for students to investigate and report on a genetic disorder of their choice.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Meiosis and Fertilization – Understanding How Genes Are Inherited
Rating

Students use model chromosomes and answer analysis and discussion questions to learn about meiosis and fertilization. As they model meiosis and fertilization, students follow the alleles of a human gene from the parents' body cells through gametes to zygotes; thus, students learn how a person inherits one copy of each gene from each of his/her parents. To learn how meiosis contributes to genetic variation, students analyze the results of crossing over and independent assortment. Students also compare and contrast meiosis and mitosis, and they learn how a mistake in meiosis can result in Down syndrome or death of an embryo. This activity helps students meet the Next Generation Science Standards.

Subject:
Biology
Material Type:
Activity/Lab
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
09/07/2018
Minds-On Activities for Teaching Biology
Read the Fine Print
Rating

The Student Handouts for these minds-on activities challenge students to actively develop their understanding of biological concepts and apply these concepts to the interpretation of scientific evidence and real-world situations. The Teacher Notes provide learning goals, instructional suggestions, relevant scientific background, and suggestions for preparatory and follow-up activities. Many of these activities are explicitly aligned with the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Game
Interactive
Lecture Notes
Lesson Plan
Unit of Study
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Mitosis, Meiosis and Fertilization Lessons
Read the Fine Print
Rating

These teacher notes summarize important concepts for students to understand concerning mitosis and meiosis, including the principle that understanding meiosis and fertilization provides the basis for understanding the fundamentals of inheritance. The proposed sequence of learning activities will help students understand and learn these major concepts and progress beyond common misconceptions. This overview provides links to suggested activities which include a hands-on simulation of mitosis meiosis and fertilization, a card sort of activity, a vocabulary review game and discussion questions.

Subject:
Life Science
Material Type:
Activity/Lab
Game
Lesson Plan
Unit of Study
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Mitosis, Meiosis and Fertilization Vocabulary Review Game
Read the Fine Print
Rating

This game helps students to enjoy reviewing vocabulary related to mitosis, meiosis and fertilization. Each card in the deck has a target vocabulary word and two related taboo words that the student may not use when giving clues so the other students in his or her small group can guess the target word. Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms.

Subject:
Life Science
Material Type:
Game
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Mitosis and Meiosis Card Sort
Read the Fine Print
Rating

This minds-on activity is designed to help students review the processes of mitosis and meiosis and to ensure that students understand how chromosomes move during mitosis vs. meiosis. Students arrange the cards from a shuffled deck of the stages of mitosis and meiosis in the sequence of steps that occur during cell division by mitosis and another sequence of steps that occur during cell division by meiosis.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Mitosis and the Cell Cycle
Read the Fine Print
Rating

In this hands-on, minds-on activity students use model chromosomes and answer analysis and discussion questions to learn how the cell cycle produces genetically identical daughter cells. Students learn how DNA replication and mitosis ensure that each new cell gets a complete set of chromosomes with a complete set of genes. Students learn why each cell needs a complete set of genes and how genes influence phenotypic characteristics. Finally, students analyze exponential growth to understand how a single cell develops into the trillions of cells in a human body. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Interactive
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Lori Spindler
Scott Poethig
Date Added:
11/05/2014
Moldy Jell-O
Read the Fine Print
Rating

Students design experiments to determine how substrate and environmental conditions influence growth of common molds. Students carry out their experiments, analyze and interpret their evidence, and prepare a report.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Molecular Biology Concepts and Activities
Read the Fine Print
Rating

This overview reviews key concepts and learning activities to help students understand how genes influence our traits by molecular processes. Topics covered include basic understanding of the important roles of proteins and DNA; DNA structure, function and replication; the molecular biology of how genes influence traits, including transcription and translation; and the molecular biology of mutations. To help students understand the relevance of these molecular processes, the suggested learning activities link alleles of specific genes to human characteristics such as albinism, sickle cell anemia and muscular dystrophy. This overview provides links to suggested activities which include hands-on laboratory and simulation activities, web-based simulations, discussion activities and a vocabulary review game.

Subject:
Life Science
Material Type:
Activity/Lab
Game
Lesson Plan
Unit of Study
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Molecular Biology Vocabulary Review Game
Read the Fine Print
Rating

This game helps students to enjoy reviewing vocabulary related to molecular biology, including DNA and RNA structure and function, transcription and translation. Each card in the deck has a target vocabulary word and two related taboo words that the student may not use when giving clues so the other students in his or her small group can guess the target word. Many students have trouble learning the substantial new vocabulary required for biology, and this game lets students have fun while reinforcing their understanding of key terms.

Subject:
Life Science
Material Type:
Game
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
The Molecular Biology of Mutations and Muscular Dystrophy
Read the Fine Print
Rating

In this mind-on analysis and discussion activity students explore the effects of different types of point mutations and deletion mutations and analyze the reasons why deletion mutations generally have more severe effects than point mutations. Students use their understanding of the molecular biology of mutations to analyze the genetic basis for the differences in severity of two types of muscular dystrophy. To maximize student participation and learning, I recommend that you have your students complete the questions individually or in pairs and then have a whole class discussion.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Photosynthesis & Cellular Respiration
Read the Fine Print
Rating

In this minds-on activity, students analyze the relationships between photosynthesis, cellular respiration, and the production and use of ATP. Students learn that sugar molecules produced by photosynthesis are used for cellular respiration and for the synthesis of other organic molecules. Thus, photosynthesis contributes to plant metabolism and growth. The optional final section challenges students to explain observed changes in biomass for plants growing in the light vs. dark. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Brianna Chang
Date Added:
11/05/2014
Population Growth - Exponential and Logistic Models vs. Complex Reality
Read the Fine Print
Rating

Students develop their understanding of the exponential and logistic population growth models by analyzing food poisoning and the recovery of endangered species. Then, students analyze examples where the trends in population size do not match the predictions of the exponential or logistic population growth models because the simplifying assumptions for these models are not true for the population studied. In the final section, students analyze trends in human population size and some factors that have affected and will affect these trends. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Regulation of Human Heart Rate
Read the Fine Print
Rating

Students learn how to measure heart rate accurately. Then students design and carry out an experiment to test the effects of an activity or stimulus on heart rate, analyze and interpret the data, and present their experiments in a poster session. In this activity students learn about both cardiac physiology and experimental method.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Resources for Teaching and Learning about Evolution
Read the Fine Print
Rating

This annotated compilation of some of the best resources for teaching and learning about evolution includes activities, videos and articles. In the attached file, the first section provides general and introductory resources and the second section provides resources for understanding and analyzing the evidence.

Subject:
Life Science
Material Type:
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Science Process Skills - Analyzing Evidence Concerning Effects of Carbohydrate Consumption
Read the Fine Print
Rating

This analysis and discussion activity is designed to develop students' understanding of the scientific process by having them design an experiment to test a hypothesis, compare their experimental design with the design of a research study that tested the same hypothesis, evaluate research evidence concerning two hypothesized effects of carbohydrate consumption, evaluate the pros and cons of experimental vs. observational research studies, and finally use what they have learned to revise a standard diagram of the scientific method to make it more accurate, complete and realistic. The specific effects analyzed in this activity are the effects of carbohydrate consumption on athletic performance and the effects of low-carbohydrate diets on health.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
A Scientific Investigation - What types of food contains starch and protein?
Read the Fine Print
Rating

Students learn about scientific investigation by carrying out key components of the scientific method, including developing experimental methods, generating hypotheses, designing and carrying out experiments to test these hypotheses and, if appropriate, using experimental results to revise the hypotheses. Students design and carry out two experiments which test whether starch and protein are found in some or all foods derived from animals or plants or both.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Should States Repeal Their Laws Banning First Cousin Marriage?
Read the Fine Print
Rating

This minds-on analysis and discussion activity challenges students to analyze which types of genetic conditions will be more common among children of first cousin marriages and to use evidence concerning the magnitude of observed health effects to evaluate whether laws banning first cousin marriage in 25 states should be repealed.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Should You Drink Sports Drinks?
Read the Fine Print
Rating

The questions in this activity help students to understand the effects of consuming sports drinks and when and how the consumption of sports drinks can be beneficial or harmful. This activity provides the opportunity to review some basic concepts related to osmosis, cellular respiration, mammalian temperature regulation, and how our different body systems cooperate to maintain homeostasis.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Soap Opera Genetics - Genetics to Resolve Family Arguments
Read the Fine Print
Rating

This analysis and discussion activity contains three "soap opera" episodes that contribute to student understanding of the principles of inheritance and the relevance of genetics to everyday life. In the first episode, students explain the relevant biology to answer the probing questions of a skeptical father who wants to know how his baby could be albino when neither he nor his wife are albino. The second episode, "Were the babies switched?" covers the concepts of co-dominance, incomplete dominance, polygenic inheritance, and the combined effects of genes and the environment on phenotypic characteristics. In the third episode, students analyze sex-linked inheritance.  This activity is aligned with the Next Generation Science Standards.

Subject:
Life Science
Genetics
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Some Similarities between the Spread of an Infectious Disease and Population Growth
Read the Fine Print
Rating

First, students analyze a hypothetical example of exponential growth in the number of infected individuals. Then, a class simulation of the spread of an infectious disease shows a trend that approximates logistic growth. Next, students analyze examples of exponential and logistic population growth and learn about the biological processes that result in exponential or logistic population growth. Finally, students analyze how changes in the biotic or abiotic environment can affect population size; these examples illustrate the limitations of the exponential and logistic population growth models. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Simulation
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Jennifer Doherty
Date Added:
11/05/2014
Structure and Function of Cells, Organs and Organ Systems
Read the Fine Print
Rating

In this analysis and discussion activity, students learn how the function of cells, organs and organ systems is related to structure (including shape, constituent components, and relationships between components). Students analyze multiple examples of the relationship between structure and function in diverse eukaryotic cells and in the digestive system. In addition, students learn that cells are dynamic structures with constant activity and they learn how body systems interact to accomplish important functions.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Understanding the Biology of Cancer
Read the Fine Print
Rating

This analysis and discussion activity introduces students to the molecular and cellular biology of cancer, including the important contributions of mutations in genes that code for proteins involved in regulating the rate of cell division. The questions in this activity challenge students to interpret the information presented in prose, tables and diagrams and apply their knowledge of basic molecular and cellular biology in order to understand multiple aspects of the biology of cancer, including the contributions of a variety of environmental exposures to increased risk for different types of cancer and the long lag between exposure to carcinogens and the diagnosis of cancer.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Understanding the Functions of Proteins and DNA
Read the Fine Print
Rating

This overview provides a sequence of learning activities to help students understand that proteins and DNA are not just abstract concepts in biology textbooks, but rather crucial components of our bodies that affect functions and characteristics that students are familiar with. Students learn about how proteins contribute to the digestion of food and to characteristics such as albinism, sickle cell anemia and hemophilia. Then, students learn about the relationship between the genetic information in DNA and the different versions of these proteins. The discussion, web-based, and hands-on learning activities presented are appropriate for an introductory unit on biological molecules or as an introduction to a unit on molecular biology.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Unit of Study
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014
Using Models to Understand Photosynthesis
Read the Fine Print
Rating

In this analysis and discussion activity, students develop their understanding of photosynthesis by answering questions about three different models of photosynthesis. These models are a chemical equation, a flowchart that shows changes in energy and matter, and a diagram that shows the basic processes in a chloroplast. Students learn about the role of scientific models by evaluating the advantages of each of these models for understanding the process of photosynthesis. This activity helps students meet the Next Generation Science Standards.

Subject:
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Serendip Studio
Provider Set:
Minds-On Activities for Teaching Biology
Author:
Ingrid Waldron
Date Added:
11/05/2014