Search Results (5)

View
Selected filters:
  • Andi Vicksman
All about Linear Programming
Conditions of Use:
Read the Fine Print
Rating

Students learn about linear programming (also called linear optimization) to solve engineering design problems. As they work through a word problem as a class, they learn about the ideas of constraints, feasibility and optimization related to graphing linear equalities. Then they apply this information to solve two practice engineering design problems related to optimizing materials and cost by graphing inequalities, determining coordinates and equations from their graphs, and solving their equations. It is suggested that students conduct the associated activity, Optimizing Pencils in a Tray, before this lesson, although either order is acceptable.

Subject:
Mathematics
Algebra
Geometry
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
12/16/2016
Optimizing Pencils in a Tray
Conditions of Use:
Read the Fine Print
Rating

Student groups work with manipulatives—pencils and trays—to maximize various quantities of a system. They work through three linear optimization problems, each with different constraints. After arriving at a solution, they construct mathematical arguments for why their solutions are the best ones before attempting to maximize a different quantity. To conclude, students think of real-world and engineering space optimization examples—a frequently encountered situation in which the limitation is the amount of space available. It is suggested that students conduct this activity before the associated lesson, Linear Programming, although either order is acceptable.

Subject:
Mathematics
Algebra
Geometry
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Date Added:
12/15/2016
Polygons, Angles and Trusses, Oh My!
Conditions of Use:
Read the Fine Print
Rating

Students take a close look at truss structures, the geometric shapes that compose them, and the many variations seen in bridge designs in use every day. Through a guided worksheet, students draw assorted 2D and 3D polygon shapes and think through their forms and interior angles (mental “testing”) before and after load conditions are applied. They see how engineers add structural members to polygon shapes to support them under compression and tension, and how triangles provide the strongest elemental shape. A PowerPoint® presentation is provided. This lesson prepares students for two associated activities that continue the series on polygons and trusses.

Subject:
Mathematics
Geometry
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Sabina Schill
Date Added:
02/07/2017
Polygons and Popsicle Trusses
Conditions of Use:
Read the Fine Print
Rating

Students learn about the role engineers play in designing and building truss structures. Simulating a real-world civil engineering challenge, student teams are tasked to create strong and unique truss structures for a local bridge. They design to address project constraints, including the requirement to incorporate three different polygon shapes, and follow the steps of the engineering design process. They use hot glue and Popsicle sticks to create their small-size bridge prototypes. After compressive load tests, they evaluate their results and redesign for improvement. They collect, graph and analyze before/after measurements of interior angles to investigate shape deformation. A PowerPoint® presentation, design worksheet and data collection sheet are provided. This activity is the final step in a series on polygons and trusses.

Subject:
Mathematics
Geometry
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Sabina Schill
Date Added:
02/07/2017
Triangles Everywhere: Sum of Angles in Polygons
Conditions of Use:
Read the Fine Print
Rating

Students learn about regular polygons and the common characteristics of regular polygons. They relate their mathematical knowledge of these shapes to the presence of these shapes in the human-made structures around us, especially trusses. Through a guided worksheet and teamwork, students explore the idea of dividing regular polygons into triangles, calculating the sums of angles in polygons using triangles, and identifying angles in shapes using protractors. They derive equations 1) for the sum of interior angles in a regular polygon, and 2) to find the measure of each angle in a regular n-gon. This activity extends students’ knowledge to engineering design and truss construction. This activity is the middle step in a series on polygons and trusses, and prepares students for the Polygon and Popsicle Trusses associated activity.

Subject:
Mathematics
Geometry
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Andi Vicksman
Maia Vadeen
Malinda Zarske
Nathan Coyle
Russell Anderson
Ryan Sullivan
Sabina Schill
Date Added:
02/07/2017