Group Membership and Administration
(View Complete Item Description)What is a Group on the Oregon Open Learning Hub and what are the roles of the Group Members and Group Administrators?
Material Type: Primary Source
What is a Group on the Oregon Open Learning Hub and what are the roles of the Group Members and Group Administrators?
Material Type: Primary Source
This resource is the Kindergarten common math curriculum for the San Francisco Unified School District. In Kindergarten, instructional time should focus on two critical areas: (1) representing, relating, and operating on whole numbers, initially with sets of objects; and (2) describing shapes and space. More learning time in kindergarten should be devoted to number than to other topics.
Material Type: Activity/Lab
This site provides lessons and other resources related to the grade 1 math curriculum for the San Francisco Unified School District. In Grade 1, instructional time should focus on four critical areas: (1) developing understanding of addition, subtraction, and strategies for addition and subtraction within 20; (2) developing understanding of whole number relationships and place value, including grouping in tens and ones; (3) developing understanding of linear measurement and measuring lengths as iterating length units; and (4) reasoning about attributes of, and composing and decomposing geometric shapes.
Material Type: Activity/Lab
This is the math curriculum for grade 2 in the San Francisco Unified School District. In Grade 2, instructional time should focus on four critical areas: (1) extending understanding of base-10 notation; (2) building fluency with addition and subtraction; (3) using standard units of measure; and (4) describing and analyzing shapes.
Material Type: Activity/Lab
In preparation for school closures, SFUSD has produced 10 days of activities that teachers can choose to assign to students for them to complete at home. The stand-alone activities are designed for students to do on paper without technology and are available to all under the Creative Commons Attribution License. All Elementary lesson plans and student pages (both English and Spanish versions) are Google Docs located in grade-level Google Drive folders that you can access using the links below. Secondary lessons contain proprietary content that is licensed by SFUSD and therefore can not be shared.
Material Type: Lesson
This resource is the grade 3 common math curriculum for the San Francisco Unified School District. In Grade 3, instructional time should focus on four critical areas: (1) developing understanding of multiplication and division and strategies for multiplication and division within 100; (2) developing understanding of fractions, especially unit fractions (fractions with numerator 1); (3) developing understanding of the structure of rectangular arrays and of area; and (4) describing and analyzing two-dimensional shapes.
Material Type: Activity/Lab
This resource is the grade 4 common math curriculum for the San Francisco Unified School District. In Grade 4, instructional time should focus on three critical areas: (1) developing understanding and fluency with multi-digit multiplication and developing understanding of dividing to find quotients involving multi-digit dividends; (2) developing an understanding of fraction equivalence, addition, and subtraction of fractions with like denominators, and multiplication of fractions by whole numbers; (3) understanding that geometric figures can be analyzed and classified based on their properties, such as having parallel sides, perpendicular sides, particular angle measures, and symmetry.
Material Type: Activity/Lab
This resource is the Kindergarten common math curriculum for the San Francisco Unified School District. In Grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume.
Material Type: Activity/Lab
Students first create a diagram that represents the distance a ship drops in each of a series of locks. Students create their diagrams based on a video of an actual ship traveling through the locks. Students need to use contextual clues in order to determine the relative drops in each of the locks.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills.Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesRead and interpret maps, graphs, and diagrams.Solve problems that involve linear measurement.Estimate length.Critique a diagram.
Material Type: Lesson Plan
Students will resume their project and decide on dimensions for their buildings. They will use scale to calculate the dimensions and areas of their model buildings when full size. Students will also complete a Self Check in preparation for the Putting It Together lesson.Key ConceptsThe first part of the project is essentially a review of the unit so far. Students will find the area of a composite figure—either a polygon that can be broken down into known areas, or a regular polygon. Students will also draw the figure using scale and find actual lengths and areas.GoalsRedraw a scale drawing at a different scale.Find measurements using a scale drawing.Find the area of a composite figure.SWD: Consider what supplementary materials may benefit and support students with disabilities as they work on this project:Vocabulary resource(s) that students can reference as they work:List of formulas, with visual supports if appropriateClass summaries or lesson artifacts that help students to recall and apply newly introduced skillsChecklists of expectations and steps required to promote self-monitoring and engagementModels and examplesStudents with disabilities may take longer to develop a solid understanding of newly introduced skills and concepts. They may continue to require direct instruction and guided practice with the skills and concepts relating to finding area and creating and interpreting scale drawings. Check in with students to assess their understanding of newly introduced concepts and plan review and reinforcement of skills as needed.ELL: As academic vocabulary is reviewed, be sure to repeat it and allow students to repeat after you as needed. Consider writing the words as they are being reviewed. Allow enough time for ELLs to check their dictionaries if they wish.
Material Type: Lesson Plan
Students critique the diagrams of other students from the previous lesson and receive feedback about their own diagrams. Students revise their diagrams from the first part of the lesson based on the feedback they receive.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills. Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesRead and interpret maps, graphs, and diagrams.Solve problems that involve linear measurement.Estimate length.Critique a diagram.SWD: Some students with disabilities will benefit from a preview of the goals in each lesson. Students can highlight the critical features and/or concepts and will help them to pay close attention to salient information. Students need to know their goal is to develop and refine their problem solving skills.
Material Type: Lesson Plan
Students choose a project idea and a partner or group. They write a proposal for their project.Key ConceptsProjects engage students in the applications of mathematics. It is important for students to apply mathematical ways of thinking to solve rich problems. Students are more motivated to understand mathematical concepts if they are engaged in solving a problem of their own choosing. In this lesson, students are challenged to identify an interesting mathematical problem and to choose a partner or a group to work collaboratively on solving that problem. Students gain valuable skills in problem solving, reasoning, and communicating mathematical ideas with others.Goals and Learning ObjectivesIdentify a project idea.Identify a partner or group to work collaboratively on a math project.
Material Type: Lesson Plan
How much water is in the Great Lakes? Students read and interpret a diagram that shows physical features of the Great Lakes and answer questions based on the diagram. They find the volume of each of the Great Lakes, as well as all five lakes combined, and make a bar graph to represent the volumes.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills.Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesRead and interpret graphs and diagrams.Solve problems involving volume.
Material Type: Lesson Plan
Students create a bar graph showing the Strouhal numbers for a variety of birds and bats and use their graph and other data to compare the Strouhal numbers of the different animals to analyze variation and to make predictions.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills. Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesAnalyze the relationship among the variables in an equation.Write formulas to show how variables relate.Calculate ranges of Strouhal numbers and use these ranges to make predictions.Communicate findings using multiple representations including tables, charts, graphs, and equations.Create bar graphs.
Material Type: Lesson Plan
This second lesson in negative integers carries the "real life" concept (temperature and debt) to the number line. Students will work with number lines with positive and negative numbers.
Material Type: Activity/Lab, Homework/Assignment
This is the third of six lessons teaching basic concepts related to positive and negative integers. This lesson will review previous knowledge about negative numbers and teach adding integers with the same sign, with connections to “real life” situations such as gains and losses in football yards or bank account overdraws.
Material Type: Activity/Lab, Lecture Notes, Teaching/Learning Strategy
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
Material Type: Activity/Lab
For many adult students, positive and negative integers are an example of when math “keeps changing the rules.” This is the fourth of six lessons guiding students in constructing the abstract concepts necessary to understand adding positive and negative integers. This lesson will review previous knowledge about negative numbers and teach adding integers with the same sign. The previous lesson focused on “real life situations” and this will teach expressing those real life situations on a number line. The actual problems will still be adding integers of the same sign because of the prevalence of confusion with adding two negative numbers.
Material Type: Activity/Lab, Lecture Notes, Teaching/Learning Strategy
This is a remix of Pre-Algebra/Beginning Algebra Concepts - Computer Resources with some additions to the Integers activities. https://www.oercommons.org/authoring/28963-pre-algebra-beginning-algebra-concepts-computer The intention of this curriculum guide is to provide teachers with supplemental materials to use to support students in strengthening their skills in various concept areas that are crucial for understanding beginning algebra. The activities are broken down by skill with links provided below. This is intended as a way to provide students with engaging, primarily computer-based activities to get extra practice with material that is covered elsewhere in the curriculum. This collection focuses on simulations and games using the computer—some resources may be ripe for teachers to develop unique activities to accompany the simulation and some possible suggestions are included with the descriptions. This series is intended to be pick-and-choose. In this Curriculum Guide: Activities and practice with: Integers, Exponents, Order of Operations, Distributive Property, Expressions, Equations and Basic Graphing
Material Type: Activity/Lab, Diagram/Illustration, Game, Interactive, Simulation
For many adult students, positive and negative integers are an example of when math “keeps changing the rules.” This is the fifth of six lessons guiding students in constructing the abstract concepts necessary to understand adding positive and negative integers. This lesson will review previous knowledge about negative numbers and teach adding integers with different signs. This is a time when it’s important to stress to students that understanding this lesson will help them in many future lessons.
Material Type: Lesson Plan