All resources in OpenWA Chemistry

Remix

CHM100 - Chapter 8 - Intermolecular Forces

(View Complete Item Description)

This course is an OER section developed by Dr. Ara Kahyaoglu for Bergen Community College.  The primary text for the course was developed for the Saylor Academy. However, this chapter was written by Dr. Kahyaoglu to best serve the course objectives for BCC students.Topics:London Dispersion ForcesDDF (Dipole-Dipole Interactions)Hydrogen Bonds

Material Type: Module

Author: Ara Kahyaoglu

Analytical Chemistry 2.0

(View Complete Item Description)

Analytical chemistry is more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics. The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization, optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements.

Material Type: Textbook

Author: David Harvey

Acid Dilution Problem

(View Complete Item Description)

In this activity, students use the virtual lab to create 500mL of 3M HCl solution from a concentrated stock solution of 11.6M HCl. They must first calculate the correct volumes of 11.6M HCl solution and water to mix together to create the final solution. Next, they prepare the solution using the appropriate glassware, and then can check their answer using the concentration viewer in the solution info panel.

Material Type: Activity/Lab

Acids and bases

(View Complete Item Description)

In this section we will be talking about the basics of acids and bases and how acid-base chemistry is related to chemical equilibrium. We will cover acid and base definitions, pH, acid-base equilibria, acid-base properties of salts, and the pH of salt solutions.

Material Type: Lesson

Chemical Kinetics

(View Complete Item Description)

We help students see the connection between college level chemistry course work and their differential equations coursework. We do this through modeling kinetics, or rates of chemical reaction. We offer many opportunities to model these chemical reactions with data, some of which comes from traditional introductory chemistry textbooks. We ask students to verify their model through parameter estimation. We use Excel’s Trendline addition to graphs/charts to select the models for the data and transformed data to take advantage of Trendline’s set function choices and we also use Mathematica’s direct nonlinear fitting capabilities.

Material Type: Activity/Lab

Author: Brian Winkel

Chemical Biology & Biochemistry Laboratory Using Genetic Code Expansion Manual

(View Complete Item Description)

Short Description: Proteins play vital roles in most biological processes; these roles include acting as catalysts for physiological reactions, as regulators for those reactions, or as structural framework around which these processes can occur. Proteins’ complex organization of diverse functionality in 3D space leads to an astonishing range of function for living organisms. Understanding this intimate relationship between structure and function is the backbone of understanding the natural world and is the key to controlling it. Data dashboard Word Count: 13793 (Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Material Type: Textbook

Authors: Kari van Zee, Kelsey Kean, Ryan Mehl

Chemistry: Atoms First 2e

(View Complete Item Description)

Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through a collaborative publishing partnership between OpenStax and the University of Connecticut and UConn Undergraduate Student Government Association. This title is an adaptation of the OpenStax Chemistry text and covers scope and sequence requirements of the two-semester general chemistry course. Reordered to fit an atoms first approach, this title introduces atomic and molecular structure much earlier than the traditional approach, delaying the introduction of more abstract material so students have time to acclimate to the study of chemistry. Chemistry: Atoms First also provides a basis for understanding the application of quantitative principles to the chemistry that underlies the entire course.

Material Type: Textbook

Authors: Allison Soult, Andrew Eklund, Carol Martinez, Donald Carpenetti, Don Frantz, Edward J. Neth, Emad El-Giar, George Kaminski, Jason Powell, Jennifer Look, Klaus Theopold, Mark Blaser, Paul Flowers, Paul Hooker, Richard Langley, Simon Bott, Thomas Sorenson, Troy Milliken, Vicki Moravec, William R. Robinson

Introductory Chemistry

(View Complete Item Description)

David W. Ball of Cleveland State University brings his new survey of general chemistry text, Introductory Chemistry, to the market with a fresh theme that will be sure to hold student interest: "Chemistry is Everywhere." Introductory Chemistry is intended for a one-semester introductory or preparatory chemistry course. Throughout the chapters, David presents two features that reinforce the theme of the textbook, that chemistry is everywhere.The first is the boxed feature titled, appropriately, “Chemistry is Everywhere”. This feature takes a topic of the chapter and demonstrates how this topic shows up in everyday life. In the introductory chapter, “Chemistry is Everywhere” focuses on the personal hygiene products that students may use every morning: toothpaste, soap, shampoo among others. These products are chemicals, aren’t they? This book explores some of the chemical reactions like the ones that give students clean and healthy teeth, and shiny hair. This feature makes it clear to students that chemistry is, indeed, everywhere, and it will promote student retention in what is sometimes considered an intimidating course.The second boxed feature focuses on chemistry that students likely indulge in every day: eating and drinking. In the “Food and Drink App”, David discusses how the chemistry of the chapter applies to things that students eat and drink every day. Carbonated beverages depend on the behavior of gases, foods contain acids and bases, and everyone actually eats certain rocks. (Yikes!) Cooking, eating, drinking, metabolism – all chemical processes students are involved with all the time. These features allow students to see the things we interact with every day in a new light – as chemistry.Just like many of the one-semester chemistry books you may be used to, each section in David Ball's <="" em=""> starts with one or more Learning Objectives, which list the main points of the section. Each section ends with Key Takeaways, which are reviews of the main points of the section. Each chapter is full of examples to illustrate the key points of the materials, and each example is followed with a similar “Test Yourself” exercise to see if the student understands the concept. Each section ends with its own set of paired exercises to practice the material from that section, and each chapter ends with a section of “Additional Exercises” that are more challenging or require multiple steps or skills to answer.David took the time to treat mathematical problems in Introductory Chemistry one of two ways, either as a conversion-factor problem or as a formula problem. David believes having two basic mathematical approaches (converting and formulas) allows the text to focus on the logic of the approach and not tricks or shortcuts; which speaks to the final point about Introductory Chemistry.You'll notice that David took no shortcuts with the material in this text, his inviting writing style, concise approach, consistent presentation, and interesting pedagogy have given it some of the best peer reviews we've seen at Flat World. So, order a desk copy or dive in now to see for yourself.

Material Type: Textbook

Author: David W. Ball

Organic Chemistry With a Biological Emphasis Volumes I & II

(View Complete Item Description)

A free, open-access organic chemistry textbook (volumes I and II) in which the main focus is on relevance to biology and medicine. This is a PDF version of a wiki project called Chemwiki at the University of California, Davis. There are also supplementary materials, such as PowerPoint slides and a solutions manual available for this textbook at the Chemwiki website.

Material Type: Textbook

Author: Timothy Soderberg

CLUE: Chemistry, Life, the Universe and Everything

(View Complete Item Description)

Short Description: CLUE was designed to help students attain a confident, competent, and coherent understanding of basic chemistry, in particular of the chemistry associated with organisms and their origins. Long Description: Chemistry, Life the Universe and Everything (CLUE) is a transformed general chemistry curriculum, developed by an interdisciplinary team of a chemist and a molecular biologist, that aims to bring about evidence-based change in general chemistry. General Chemistry is a gateway course for many students intending on careers in scientific, engineering, and health care-related disciplines. While there have been many attempts to improve the outcomes for these students, little has changed over the past 60 years. Recent transformation efforts have focused primarily on incorporating student engagement techniques into the course, rather than considering what it is that is important for students to learn. CLUE is different. CLUE was developed using a design research approach that focuses on scaffolded progressions around four core ideas: structure and properties, bonding and interactions, energy, and change and stability. The course emphasizes causal mechanistic reasoning in order to help students move beyond knowing that, to knowing how and knowing why chemical phenomena occur. Word Count: 104795 ISBN: 978-1-62610-101-2 (Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)

Material Type: Textbook

Authors: Melanie M. Cooper, Michael W. Klymkowsky

Biochemistry: Free For All

(View Complete Item Description)

We are happy to welcome you to our second Open Educational Resource (OER) textbook, Biochemistry Free For All. Biochemistry is a relatively young science, but its rate of growth has been truly impressive. The rapid pace of discoveries, which shows no sign of slowing, is reflected in the steady increase in the size of biochemistry textbooks. Growing faster than the size of biochemistry books have been the skyrocketing costs of higher education and the even faster rising costs of college textbooks. These unfortunate realities have created a situation where the costs of going to college are beyond the means of increasing numbers of students.

Material Type: Textbook

Authors: Indira Rajagopal, Kevin Ahern, Taralyn Tan

Organic Chemistry Laboratory Techniques

(View Complete Item Description)

This resource was created by Lisa Nichols (chemistry faculty at Butte Community College in Northern California) as a result of an academic sabbatical leave in the Fall-2015 to Spring 2016 term. The target audience are undergraduate students in organic chemistry. In this resource you will find theory and procedures on the main organic lab techniques (chromatography, crystallization, extraction, distillation) as well as general concepts on how to set up and heat apparatuses (see the Table of Contents tab for a more complete listing of topics). All procedures are accompanied by step-by-step pictures, and graphics are heavily utilized throughout the resource.

Material Type: Textbook

Author: Lisa Nichols

Organic Chemistry

(View Complete Item Description)

Organic Chemistry research involves the synthesis of organic molecules and the study of their reaction paths, interactions, and applications. Advanced interests include diverse topics such as the development of new synthetic methods for the assembly of complex organic molecules and polymeric materials, organometallic catalysis, organocatalysis, the synthesis of natural and non-natural products with unique biological and physical properties, structure and mechanistic analysis, natural product biosynthesis, theoretical chemistry and molecular modeling, diversity-oriented synthesis, and carbohydrate synthesis.

Material Type: Textbook

Freshman Organic Chemistry I

(View Complete Item Description)

This is the first semester in a two-semester introductory course focused on current theories of structure and mechanism in organic chemistry, their historical development, and their basis in experimental observation. The course is open to freshmen with excellent preparation in chemistry and physics, and it aims to develop both taste for original science and intellectual skills necessary for creative research.

Material Type: Full Course