Search Results (7)

View
Selected filters:
  • MIT Learning International Networks Consortium
The Art of Approximation in Science and Engineering: How to Whip Out Answers Quickly
Conditions of Use:
Remix and Share
Rating

The purpose of this learning video is to show students how to ...

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Subject:
Engineering
Algebra
Numbers and Operations
Physics
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Stephen M. Hou
Biotechnology: Can It Help in Making the Desert Green?
Conditions of Use:
Remix and Share
Rating

This learning video introduces high school students to a topic they would ...

This learning video introduces high school students to a topic they would not ordinarily study in school, biotechnology, and to different applications of biotechnology that relate to the main theme of the module - making the desert greener. After reviewing traditional methods used for manipulating plants to produce desired traits, students will learn about the methods of making transgenic plants. Dr. Ziad discusses a real world problem that is critical in his country, Jordan, where much of the land is desert. A prerequisite to this video lesson is some background in biology.

Subject:
Botany
Genetics
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Ziad W. Jaradat, PhD
Engineering Innovation and Entrepreneurship
Conditions of Use:
Remix and Share
Rating

This video lesson introduces students to the worlds of engineering innovation and ...

This video lesson introduces students to the worlds of engineering innovation and entrepreneurship. It seeks to encourage students to see the world with a fresh perspective for innovation through interactive classroom brainstorming activities and real life stories. Students will build self-efficacy in their own entrepreneurial potential by developing their perspective for innovation, developing a prototype solution for a problem they have recognized, and delivering an elevator pitch. The video will familiarize students with all the steps in the innovation process: from conception to launch. By the end of this lesson, students will be prepared for an optional long-term innovation project.

Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Diane Amanti
Fabulous Fractals and Difference Equations
Conditions of Use:
Remix and Share
Rating

This learning video introduces students to the world of Fractal Geometry through ...

This learning video introduces students to the world of Fractal Geometry through the use of difference equations. As a prerequisite to this lesson, students would need two years of high school algebra (comfort with single variable equations) and motivation to learn basic complex arithmetic. Ms. Zager has included a complete introductory tutorial on complex arithmetic with homework assignments downloadable here. Also downloadable are some supplemental challenge problems. Time required to complete the core lesson is approximately one hour, and materials needed include a blackboard/whiteboard as well as space for students to work in small groups. During the in-class portions of this interactive lesson, students will brainstorm on the outcome of the chaos game and practice calculating trajectories of different equations.

Subject:
Geometry
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Laura Zager
Flu Math Games
Conditions of Use:
Remix and Share
Rating

This video lesson shows students that math can play a role in ...

This video lesson shows students that math can play a role in understanding how an infectious disease spreads and how it can be controlled. During this lesson, students will see and use both deterministic and probabilistic models and will learn by doing through role-playing exercises. The primary exercises between video segments of this lesson are class-intensive simulation games in which members of the class 'infect' each other under alternative math modeling assumptions about disease progression. Also there is an occasional class discussion and local discussion with nearby classmates.

Subject:
Biology
Sociology
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Mai Perches
Richard C. Larson
Sahar Hashmi
Free Fall
Conditions of Use:
Remix and Share
Rating

This video lesson is an example of ''teaching for understanding'' in lieu ...

This video lesson is an example of ''teaching for understanding'' in lieu of providing students with formulas for determining the height of a dropped (or projected) object at any time during its fall. The concept presented here of creating a chart to organize and analyze data collected in a simple experiment is broadly useful. During the classroom breaks in this video, students will enjoy timing objects in free fall and balls rolling down ramps as a way of learning how to carefully conduct experiments and analyze the results. The beauty of this lesson is the simplicity of using only the time it takes for an object dropped from a measured height to strike the ground. There are no math prerequisites for this lesson and no needed supplies, other than a blackboard and chalk. It can be completed in one 50-60-minute classroom period.

Subject:
Physics
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
John Bookston
Guess the Last Ball
Conditions of Use:
Remix and Share
Rating

This video lesson uses the technique of induction to show students how ...

This video lesson uses the technique of induction to show students how to analyze a seemingly random occurrence in order to understand it through the development of a mathematical model. Using the medium of a simple game, Dr. Lodhi demonstrates how students can first apply the 'rules' to small examples of the game and then, through careful observation, can begin to see the emergence of a possible pattern. Students will learn that they can move from observing a pattern to proving that their observation is correct by the development of a mathematical model. Dr. Lodhi provides a second game for students in the Teacher Guide downloadable on this page. There are no prerequisites for this lesson and needed materials include only a blackboard and objects of two different varieties - such as plain and striped balls, apples and oranges, etc. The lesson can be completed in a 50-minute class period.

Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Fakhar Lohdi