Updating search results...

Search Resources

79 Results

View
Selected filters:
  • environmental-engineering
Just Breathe Green: Measuring Transpiration Rates
Read the Fine Print
Educational Use
Rating
0.0 stars

Through multi-trial experiments, students are able to see and measure something that is otherwise invisible to them seeing plants breathe. Student groups are given two small plants of native species and materials to enclose them after watering with colored water. After being enclosed for 5, 10 and 15 minutes, teams collect and measure the condensed water from the plants' "breathing," and then calculate the rates at which the plants breathe. A plant's breath is known as transpiration, which is the flow of water from the ground where it is taken up by roots (plant uptake) and then lost through the leaves. Students plot volume/time data for three different native plant species, determine and compare their transpiration rates to see which had the highest reaction rate and consider how a plant's unique characteristics (leaf surface area, transpiration rate) might figure into engineers' designs for neighborhood stormwater management plans.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Making "Magic" Sidewalks of Pervious Pavement
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use everyday building materials sand, pea gravel, cement and water to create and test pervious pavement. They learn what materials make up a traditional, impervious concrete mix and how pervious pavement mixes differ. Groups are challenged to create their own pervious pavement mixes, experimenting with material ratios to evaluate how infiltration rates change with different mix combinations.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
A Matter of Leaching
Read the Fine Print
Educational Use
Rating
0.0 stars

Students leach organic matter from soil to create a water sample with high dissolved organic matter content (DOM), and then make filters to see if the DOM can be removed. They experience the difficulties of removing DOM from water, and learn about other processes that might make DOM removal more effective.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Ebert
Marissa H. Forbes
Date Added:
09/18/2014
Modeling and Assessment for Policy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

IDS.410J Modeling and Assessment for Policy explores how scientific information and quantitative models can be used to inform policy decision-making. Students will develop an understanding of quantitative modeling techniques and their role in the policy process through case studies and interactive activities. The course addresses issues such as analysis of scientific assessment processes, uses of integrated assessment models, public perception of quantitative information, methods for dealing with uncertainties, and design choices in building policy-relevant models. Examples used in this class focus on models and information used in earth system governance.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Computer Science
Engineering
Environmental Science
Environmental Studies
Mathematics
Physical Science
Political Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Selin, Noelle
Date Added:
02/01/2013
Natural and Urban "Stormwater" Water Cycle Models
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their understanding of the natural water cycle and the urban "stormwater" water cycle, as well as the processes involved in both cycles to hypothesize how the flow of water is affected by altering precipitation. Student groups consider different precipitation scenarios based on both intensity and duration. Once hypotheses and specific experimental steps are developed, students use both a natural water cycle model and an urban water cycle model to test their hypotheses. To conclude, students explain their results, tapping their knowledge of both cycles and the importance of using models to predict water flow in civil and environmental engineering designs. The natural water cycle model is made in advance by the teacher, using simple supplies; a minor adjustment to the model easily turns it into the urban water cycle model.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew O'Brien
Austin Childress
Carleigh Samson
Maya Trotz
Ryan Locicero
Date Added:
09/18/2014
Natural and Urban "Stormwater" Water Cycles
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an overview of the components of the hydrologic cycle and the important roles they play in the design of engineered systems, students' awareness of the world's limited fresh water resources is heightened. The hydrologic cycle affects everyone and is the single most critical component to life on Earth. Students examine in detail the water cycle components and phase transitions, and then learn how water moves through the human-made urban environment. This urban "stormwater" water cycle is influenced by the pervasive existence of impervious surfaces that limit the amount of infiltration, resulting in high levels of stormwater runoff, limited groundwater replenishment and reduced groundwater flow. Students show their understanding of the process by writing a description of the path of a water droplet through the urban water cycle, from the droplet's point of view. The lesson lays the groundwork for rest of the unit, so students can begin to think about what they might do to modify the urban "stormwater" water cycle so that it functions more like the natural water cycle. A PowerPoint® presentation and handout are provided.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Ocean Acidification, Imminent Mass Extinction?
Read the Fine Print
Educational Use
Rating
0.0 stars

“Ocean Acidification, Imminent Mass Extinction?” is a unit for an Earth, Physical, or Environmental Science classroom. This unit is easily included in larger curricula focusing on climate change, the carbon cycle, human impact on Earth, or ocean chemistry. A backdrop for the unit is that ocean acidification may be jeopardizing global primary production because phytoplankton are being forced to adapt to a lower and lower pH. Loss of this piece of the food web has the potential to collapse massive, if not the most massive, ecosystems, hence mass extinction. Past mass extinction events are briefly discussed.

The unit begins by presenting the phenomenon of an ocean pH that is changing and then delves into the chemistry behind the change. The unit also considers the biological consequences of an ocean that is more acidic than it had been in millennia. Furthermore, implications to global carbon cycling are considered as the planet relies on microscopic ocean creatures to sequester carbon and transport it into long term storage. Lastly, the unit presents some recent research into the effects of the increased ocean acidity on an array of different organisms. Student activities are focused on hands on demonstrations that help students gain an understanding of pH; how pH is affected by carbon dioxide; and how shells are vulnerable to acidic conditons.

Subject:
Career and Technical Education
Environmental Studies
Life Science
Physical Science
Material Type:
Lesson Plan
Unit of Study
Provider:
Yale-New Haven Teachers Institute
Provider Set:
2018 Curriculum Units Volume II
Date Added:
08/01/2018
Ocean Water Desalination
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the techniques engineers have developed for changing ocean water into drinking water, including thermal and membrane desalination. They begin by reviewing the components of the natural water cycle. They see how filters, evaporation and/or condensation can be components of engineering desalination processes. They learn how processes can be viewed as systems, with unique objects, inputs, components and outputs, and sketch their own system diagrams to describe their own desalination plant designs.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Juan Ramirez Jr.
Stephanie Rivale
Date Added:
09/18/2014
Ocean Wave Interaction with Ships and Offshore Energy Systems (13.022)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The subject introduces the principles of ocean surface waves and their interactions with ships, offshore platforms and advanced marine vehicles. Surface wave theory is developed for linear and nonlinear deterministic and random waves excited by the environment, ships, or floating structures.
Following the development of the physics and mathematics of surface waves, several applications from the field of naval architecture and offshore engineering are addressed. They include the ship Kelvin wave pattern and wave resistance, the interaction of surface waves with floating bodies, the seakeeping of ships high-speed vessels and offshore platforms, the evaluation of the drift forces and other nonlinear wave effects responsible for the slow-drift responses of compliant offshore platforms and their mooring systems designed for hydrocarbon recovery from large water depths.
This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.022. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and this course was renumbered 2.24.

Subject:
Applied Science
Career and Technical Education
Engineering
Environmental Science
Environmental Studies
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sclavounos, Paul
Date Added:
02/01/2002
Oil Spill
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson will allow students to explore an important role of environmental engineers: cleaning the environment. Students will learn details about the Exxon Valdez oil spill, which was one of the most publicized and studied environmental tragedies in history. In the accompanying activity, they will try many "engineered" strategies to clean up their own manufactured oil spill and learn the difficulties of dealing with oil released into our waters.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Oil Spill Cleanup
Read the Fine Print
Educational Use
Rating
0.0 stars

This hands-on experiment will provide students with an understanding of the issues that surround environmental cleanup. Students will create their own oil spill, try different methods for cleaning it up, and then discuss the merits of each method in terms of effectiveness (cleanliness) and cost. They will be asked to put themselves in the place of both an environmental engineer and an oil company owner who are responsible for the clean-up.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Sharon D. Perez-Suarez
Date Added:
10/14/2015
Pea Soup Ponds
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will learn how water can be polluted by algal blooms. They will grow algae with different concentrations of fertilizer or nutrients and analyze their results as environmental engineers working to protect a local water resource.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
The Physics of Fluid Mechanics
Read the Fine Print
Educational Use
Rating
0.0 stars

From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Reactive Transport in the Subsurface
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course teaches principles of flow, transport, and reaction processes in the natural subsurface.

Subject:
Career and Technical Education
Chemistry
Environmental Studies
Physical Geography
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Li Li
Date Added:
10/07/2019
Resolving Public Disputes
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to real-world dynamics of public policy controversies. Topics to be considered include national, state, and local policy disputes, such as smoking, hazardous waste, abortion, gun control, and education. Using a case study approach, students study whether and how those disputes get resolved. Students conduct debates and simulations in addition to writing a series of short essays.

Subject:
Applied Science
Engineering
Environmental Science
Political Science
Social Science
Material Type:
Full Course
Date Added:
07/14/2022
S-Lab: Laboratory for Sustainable Business
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can we translate real-world challenges into future business opportunities? How can individuals, organizations, and society learn and undergo change at the pace needed to stave off worsening problems? Today, organizations of all kinds—traditional manufacturing firms, those that extract resources, a huge variety of new start-ups, services, non-profits, and governmental organizations of all types, among many others—are tackling these very questions. For some, the massive challenges of moving towards sustainability offer real opportunities for new products and services, for reinventing old ones, or for solving problems in new ways. The course aims to provide participants with access and in-depth exposure to firms that are actively grappling with the sustainability-related issues through cases, readings and guest speakers.

Subject:
Applied Science
Engineering
Environmental Science
Political Science
Social Science
Material Type:
Full Course
Author:
Sarah Slaughter
Date Added:
01/01/2008
STAR: Software Tools for Academics and Researchers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Software Tools for Academics and Researchers (STAR) program at MIT seeks to bridge the divide between scientific research and the classroom. Understanding and applying research methods in the classroom setting can be challenging due to time constraints and the need for advanced equipment and facilities. The multidisciplinary STAR team collaborates with faculty from MIT and other educational institutions to design software exploring core scientific research concepts. The goal of STAR is to develop innovative and intuitive teaching tools for classroom use.
All of the STAR educational tools are freely available. To complement the educational software, the STAR website contains curriculum components/modules which can facilitate the use of STAR educational tools in a variety of educational settings. Students, teachers, and professors should feel welcome to download software and curriculum modules for their own use.
Online Publication

Subject:
Applied Science
Biology
Computer Science
Education
Educational Technology
Engineering
Environmental Science
Genetics
Hydrology
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
None, MIT Office of Educational Innovation and Technology
Date Added:
02/01/2012
Solving Complex Problems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Solving Complex Problems provides an opportunity for entering freshmen to gain first-hand experience with working as part of a team to develop effective approaches to complex problems in Earth system science and engineering that do not have straightforward solutions. The subject includes training in a variety of skills, ranging from library research to Web Design.
Each year's course explores a different problem in detail through the study of complimentary case histories and the development of creative solution strategies. Beginning in 2000 as an educational experiment sponsored by MIT's Committee on the Undergraduate Program, and receiving major financial support from the Alex and Britt d'Arbeloff Fund for Excellence in MIT Education, the subject is designed to enhance the first-semester freshman experience by helping students develop contexts for other subjects in the sciences and humanities, and by helping them to establish learning communities that include upperclassmen, faculty, MIT alumni, and professionals from many walks of life.
In Fall 2003, students from the Class of 2007 were challenged with “Mission 2007”:

To design the most "environmentally correct" strategy for oil exploration and extraction in the Arctic National Wildlife Refuge (ANWR); and
To perform a cost-benefit analysis in order to evaluate whether or not the hydrocarbon resources that might be extracted from beneath ANWR are worth the environmental damage that might result from the process.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Engineering
Environmental Science
Environmental Studies
Physical Science
Political Science
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Bras, Rafael
Hodges, Kip
Date Added:
09/01/2003
Solving Complex Problems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

12.000 Solving Complex Problems is designed to provide students the opportunity to work as part of a team to propose solutions to a complex problem that requires an interdisciplinary approach. For the students of the class of 2013, 12.000 will revolve around the issues associated with what we can and must do about the steadily increasing amounts CO{{< sub "2â€ >}} in Earth’s atmosphere. 12.000 is a core course for the MIT Terrascope freshman learning community. Each year’s class explores a different problem in detail through the study of complementary case histories and the development of creative solution strategies. It includes training in Web site development, effective written and oral communication, and team building. Initially developed with major financial support from the d’Arbeloff Fund for Excellence in Education, 12.000 is designed to enhance the freshman experience by helping students develop contexts for other subjects in the sciences and humanities, and by helping them to establish learning communities that include upperclassmen, faculty, MIT alumni, and professionals in science and engineering fields.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Author:
Samuel Bowring
Date Added:
01/01/2009
Stream Consciousness
Read the Fine Print
Educational Use
Rating
0.0 stars

During this activity, students will learn how environmental engineers monitor water quality in resource use and design. They will employ environmental indicators to assess the water quality of a nearby stream. Students will make general observations of water quality as well as count the number of macroinvertabrates. They will then use the information they collected to create a scale to rate how good or bad the water quality of the stream. Finally, the class will compare their numbers and discuss and defend their results.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/18/2014