Updating search results...

Search Resources

2656 Results

View
Selected filters:
Cars: Engineering for Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how the aerodynamics and rolling resistance of a car affect its energy efficiency through designing and constructing model cars out of simple materials. As the little cars are raced down a tilted track (powered by gravity) and propelled off a ramp, students come to understand the need to maximize the energy efficiency of their cars. The most energy-efficient cars roll down the track the fastest and the most aerodynamic cars jump the farthest. Students also work with variables and plot how a car's speed changes with the track angle.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eszter Horanyi
Jake Crosby
Janet Yowell
William Surles
Date Added:
09/18/2014
Cars from the Future
Read the Fine Print
Educational Use
Rating
0.0 stars

In some cities, especially large cities such as Los Angeles or Mexico City, visible air pollution is a major problem, both for human health and the environment. A variety of sources contribute to air pollution, but personal vehicles account for one of the main sources. Though each car has relatively low emissions when compared to vehicles of the 1970s, there are so many more cars on the road now that their emissions play a large role in overall pollution. In this activity, students think about alternate ways to power a vehicle to reduce emissions. Student teams design an eco-friendly car using the engineering design process, and make a presentation to showcase their product.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Date Added:
10/14/2015
Cartesian Diver
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe Pascal's law, Archimedes' principle and the ideal gas law as a Cartesian diver moves within a closed system. The Cartesian diver is neutrally buoyant and begins to sink when an external pressure is applied to the closed system. A basic explanation and proof of this process is provided in this activity, and supplementary ideas for more extensive demonstrations and independent group activities are presented.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Carve That Mountain
Read the Fine Print
Educational Use
Rating
0.0 stars

Students consider the Earth's major types of landforms such as mountains, rivers, plains, hills, canyons, oceans and plateaus. Student teams build three-dimensional models of landscapes, depicting several of these landforms. Once the models are built, they act as civil and transportation engineers to design and build roads through the landscapes they have created. The worksheet is provided in English and Spanish.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Sara Born
Date Added:
10/14/2015
The Car with a Lot of Potential
Read the Fine Print
Educational Use
Rating
0.0 stars

Working in teams of three, students perform quantitative observational experiments on the motion of LEGO MINDSTORMS(TM) NXT robotic vehicles powered by the stored potential energy of rubber bands. They experiment with different vehicle modifications (such as wheel type, payload, rubber band type and lubrication) and monitor the effects on vehicle performance. The main point of the activity, however, is for students to understand that through the manipulation of mechanics, a rubber band can be used in a rather non-traditional configuration to power a vehicle. In addition, this activity reinforces the idea that elastic energy can be stored as potential energy.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Daria Kotys-Schwartz
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
A Case of Innovation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about power generation using river currents. A white paper is a focused analysis often used to describe how a technology solves a problem. In this literacy activity, students write a simplified version of a white paper on an alternative electrical power generation technology. In the process, they develop their critical thinking skills and become aware of the challenge and promise of technological innovation that engineers help to make possible. This activity is geared towards fifth grade and older students and computer capabilities are required. Some portions of the activity may be appropriate with younger students. CAPTION: Upper Left: Trey Taylor, President of Verdant Power, talks about green power with a New York City sixth-grade class. Lower Left: Verdant Power logo. Center: Verdant Power's turbine evaluation vessel in New York's East River. In the background is a conventional power plant. Upper Right: The propeller-like turbine can be raised and lowered from the platform of the turbine evaluation vessel. Lower Right: Near the East River, Mr. Taylor explains to the class how water currents can generate electric power.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cindy Coker
Denise W. Carlson
Jane Evenson
Malinda Schaefer Zarske
Trey Taylor
Date Added:
10/14/2015
Catalytic Converter
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video lesson aims to motivate students about chemistry and to raise their awareness about how chemistry helps in solving certain environmental problems. In this lesson, the air pollution problem created by cars and other vehicles is presented. The lesson will highlight causes of this problem, harmful products from it and possible solutions. There will also be discussion of ways to convert the pollutants produced by burning oil in vehicles into more friendly products.

Subject:
Applied Science
Chemistry
Environmental Science
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Prof. Mohammad El-Khateeb
Date Added:
06/11/2012
Catapult Challenge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a really fun and informative lesson that I do with my high school Programming/technology class to break up the monotony of beginner programming. However; this lesson can be used and applied in essentially any class and for many purposes, and to address many areas. One of the other really nice things about this lesson is that it can be extended to hit many points including physics, math, and advanced engineering.

Throughout the building period, I would present teams with a challenge (puzzle, build, etc…) and the first team to complete it would get a prize. It could be more modification time, extra materials, etc…)

The materials (including hot glue guns) can be purchased at Wal Mart or a similar store for around $20-25, if ordering through your district isn’t an option. With those purchases, it gives you a lot more materials than needed which can be used for additional similar projects.

Subject:
Applied Science
Education
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Date Added:
06/16/2021
Catapult Challenge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a really fun and informative lesson that I do with my high school Programming/technology class to break up the monotony of beginner programming. However; this lesson can be used and applied in essentially any class and for many purposes, and to address many areas. One of the other really nice things about this lesson is that it can be extended to hit many points including physics, math, and advanced engineering.

Throughout the building period, I would present teams with a challenge (puzzle, build, etc…) and the first team to complete it would get a prize. It could be more modification time, extra materials, etc…)

The materials (including hot glue guns) can be purchased at Wal Mart or a similar store for around $20-25, if ordering through your district isn’t an option. With those purchases, it gives you a lot more materials than needed which can be used for additional similar projects.

Subject:
Applied Science
Education
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Date Added:
12/05/2018
Catapults!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe the relationship between the angle of a catapult (a force measurement) and the flight of a cotton ball. They learn how Newton's second law of motion works by seeing directly that F = ma. When they pull the metal "arm" back further, thus applying a greater force to the cotton ball, it causes the cotton ball to travel faster and farther. Students also learn that objects of greater mass require more force to result in the same distance traveled by a lighter object.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Catching the Perfect SAR Waves!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the importance of the Pythagorean theorem as applied in radar imaging. They use a sensor unit with IRED (infrared emitting diode) to measure triangle distances and the theorem to calculate and verify distances. Student groups calibrate the sensor units to ensure accurate distance measurements. A "pretend" outdoor radar imaging model is provided to groups for sensor unit testing.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luis Avila
Mounir Ben Ghalia
Date Added:
10/14/2015
Caught in the Net
Read the Fine Print
Educational Use
Rating
0.0 stars

Bycatch can be defined as the act of unintentionally catching certain living creatures using fishing gear. A bycatched species is distinguished from a target species (the animal the gear is intended to catch) because it is not sold or used. Marine mammals (whales, dolphins, porpoises), seabirds, sea turtles and unwanted or undersized fish are some examples of animals caught as by-catch The incidental capture of these animals can significantly reduce their populations. The most well known example of by-catch may be the unintentional mortality of spotted and spinner dolphins in the tuna fishing industry. "Dolphin-Safe" tuna was a result of this interaction (Be prepared to discuss how this came about with students, as it is something close to their daily lives). One important aspect to consider when discussing this issue is that laws protect some of the animals caught as by-catch (Marine Mammal Protection Act and Endangered Species Act). In this lesson, students will first be shown pictures of entangled marine animals and will discuss the definition of by-catch This will lead to discussions on why by-catching exists, how it impacts specific animals as well as humans, whether the students believe it is an important issue, and how by-catch can be reduced.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Whitt
Matt Nusnbaum
Vicki Thayer
Date Added:
09/18/2014
Cell Celebration!
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, the students look at the components of cells and their functions. The lesson focuses on the difference between prokaryotic and eukaryotic cells. Each part of the cell performs a specific function that is vital for the cell's survival. Bacteria are single-celled organisms that are very important to engineers. Engineers can use bacteria to break down toxic materials in a process called bioremediation, and they can also kill or disable harmful bacteria through disinfection.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
09/18/2014
The Cell Cycle Animation
Read the Fine Print
Rating
0.0 stars

During development from stem to fully differentiated, cells in the body alternately divide (mitosis) and "appear" to be resting (interphase). This sequence of activities exhibited by cells is called the cell cycle. Watch this animation to learn more about each of the stages in the cell cycle: interphase, gap 0, gap 1, S Phase, gap 2, and M phase.

Subject:
Education
Life Science
Material Type:
Diagram/Illustration
Interactive
Lesson Plan
Provider:
SMARTR
Provider Set:
SMARTR: Virtual Learning Experiences for Youth
Date Added:
11/06/2010
Cell Membrane Color Sheet and Build a Cell Membrane
Read the Fine Print
Educational Use
Rating
0.0 stars

Students color-code a schematic of a cell and its cell membrane structures. Then they complete the "Build-a-Membrane" activity found at http://learn.genetics.utah.edu. This reinforces their understanding of the structure and function of animal cells, and shows them the importance of being able to construct a tangible model of something that is otherwise difficult to see.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Date Added:
09/18/2014
Cell Membrane Experimental Design
Read the Fine Print
Educational Use
Rating
0.0 stars

The final activity of this unit, which integrates the Keepers of the Gate unit through the Go Public challenge, involves students taking part in experimental design. They design a lab that answers the challenge question: "You are spending the night with your grandmother when your throat starts to feel sore. Your grandma tells you to gargle with salt water and it will feel much better. Thinking this is an old wive's tale, you scoff, but when you try it later that night it works! Why?" Students must have their plan approved by the instructor before they begin. A formal lab write-up is due as part of the laboratory investigation.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Melinda M. Higgins
Date Added:
09/18/2014
Cell Membrane Structure and Function
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the different structures that comprise cell membranes, fulfilling part of the Research and Revise stages of the legacy cycle. They view online animations of cell membrane dynamics (links provided). Then they observe three teacher demonstrations that illustrate diffusion and osmosis concepts, as well as the effect of movement through a semi-permeable membrane using Lugol's solution.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Date Added:
09/18/2014
Cell Theory Timeline
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Throughout time, man has been curious about the world around him. As technology progresses, so too do the views of the scientific world. As we discover new ways to examine the world, we are forced to question our current theories and decide whether or not they are accurate or outdated. One invention, the microscope, was one of the most significant developments in scientific history. It allowed scientists a look at items so small they weren’t even believed to exist. From this invention stems the scientific theory of the cell. This activity allows students to explore the major players in the development of the cell theory.

Subject:
Life Science
Material Type:
Activity/Lab
Date Added:
10/17/2017
Cells
Read the Fine Print
Educational Use
Rating
0.0 stars

In this unit, students look at the components of cells and their functions and discover the controversy behind stem cell research. The first lesson focuses on the difference between prokaryotic and eukaryotic cells. In the second lesson, students learn about the basics of cellular respiration. They also learn about the application of cellular respiration to engineering and bioremediation. The third lesson continues students' education on cells in the human body and how (and why) engineers are involved in the research of stem cell behavior.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015