Updating search results...

Search Resources

2656 Results

View
Selected filters:
Can It Support You? No Bones about It!
Read the Fine Print
Educational Use
Rating
0.0 stars

After completing the associated lesson and its first associated activity, students are familiar with the 20 major bones in the human body knowing their locations and relative densities. When those bones break, lose their densities or are destroyed, we look to biomedical engineers to provide replacements. In this activity, student pairs are challenged to choose materials and create prototypes that could replace specific bones. They follow the steps of the engineering design process, researching, brainstorming, prototyping and testing to find bone replacement solutions. Specifically, they focus on identifying substances that when combined into a creative design might provide the same density (and thus strength and support) as their natural counterparts. After iterations to improve their designs, they present their bone alternative solutions to the rest of the class. They refer to the measured and calculated densities for fabricated human bones calculated in the previous activity, and conduct Internet research to learn the densities of given fabrication materials (or measure/calculate those densities if not found online).

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Michelle Gallagher
Terri Camesano
Date Added:
10/14/2015
Can You Catch the Water?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct three-dimensional models of water catchment basins using everyday objects to form hills, mountains, valleys and water sources. They experiment to see where rain travels and collects, and survey water pathways to see how they can be altered by natural and human activities. Students discuss how engineers design structures that impact water collection, as well as systems that clean and distribute water.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Jay Shah
Malinda Schaefer Zarske
Date Added:
10/14/2015
Can You Hear It?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students drop marbles into holes cut into shoebox lids and listen carefully to try to determine the materials inside the box that the marbles fall onto, illustrating the importance of surface composition on dolphins' abilities to sense materials, depth and texture using echolocation. This activity builds on what students learned in the associated lesson about bycatching by fisheries and how it affects marine habitats and species, especially dolphins. Students learn how echolocation works, why certain animals use it to determine the size, shape and distance of objects, and how people can take advantage of dolphins' echolocation ability when developing bycatch avoidance methods.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Whitt
Matt Nusnbaum
Vicki Thayer
Date Added:
10/14/2015
Can You Resist This?
Read the Fine Print
Educational Use
Rating
0.0 stars

This lab demonstrates Ohm's law as students set up simple circuits each composed of a battery, lamp and resistor. Students calculate the current flowing through the circuits they create by solving linear equations. After solving for the current, I, for each set resistance value, students plot the three points on a Cartesian plane and note the line that is formed. They also see the direct correlation between the amount of current flowing through the lamp and its brightness.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
Date Added:
09/18/2014
Can You Take the Pressure?
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the concept of air pressure. Students will explore how air pressure creates force on an object. They will study the relationship between air pressure and the velocity of moving air.

Subject:
Applied Science
Engineering
Geoscience
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Can You Taste It?
Read the Fine Print
Educational Use
Rating
0.0 stars

Few people are aware of how crucial the sense of smell is to identifying foods, or the adaptive value of being able to identify a food as being familiar and therefore safe to eat. In this lesson and activity, students conduct an experiment to determine whether or not the sense of smell is important to being able to recognize foods by taste. The teacher leads a discussion that allows students to explore why it might be adaptive for humans and other animals to be able to identify nutritious versus noxious foods. This is followed by a demonstration in which a volunteer tastes and identifies a familiar food, and then attempts to taste and identify a different familiar food while holding his or her nose and closing his or her eyes. Then, the class develops a hypothesis and a means to obtain quantitative results for an experiment to determine whether students can identify foods when the sense of smell has been eliminated.

Subject:
Applied Science
Engineering
Life Science
Nutrition
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Cancer Stem Cells and Therapy Resistance
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Resistance to therapy is a major hurdle in current cancer treatments. A major part of the problem is heterogeneity. Tumors, by their nature, have multiple cell lineages with varying characteristics. Among these are cancer stem cells (CSCs). CSCs can regenerate a tumor even after treatment kills many of its other cells. And they can go dormant, transport drugs outside the cell membrane, avoid apoptosis, and express resistance-conferring non-coding RNAs, all of which boost tumors’ resistance to treatment. A new review describes common CSC surface markers, deregulated signaling pathways, and resistance mechanisms as well as the status of research into CSC therapies. Current therapies targeting CSCs do not address tumor heterogeneity or the complexity of the tumor microenvironment..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
02/25/2021
Cancer-fighting viruses may actually promote brain tumor growth
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Viral infection can be devastating. But some viruses are an important part of therapies for fighting diseases like cancer. Adenoviruses are one example – they deliver deadly payloads to cancer cells without harming healthy tissue. Or do they? A recent study suggests that adenovirus infection could promote the formation of glioma stem cells, the self-renewing cells that keep brain tumors alive and spreading. Experiments on glioma cells derived from human patients showed that adenovirus infection promoted the formation of tumorspheres, solid, spherical formations that develop from self-renewing glioma stem cells. When transplanted into mice grafted with glioma tumors, these formations promoted tumor growth. A closer look revealed three signaling molecules that adenoviruses activate during this process: TLR9, a pro-inflammatory receptor, NEAT1, a non-coding RNA frequently overexpressed in human tumors, and STAT3, a protein linked to tumor formation..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/11/2020
Candy Cane Binary Coding
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will create the word STEM using binary code on a candy cane. They will have the option of doing this on a piece of paper or with Legos.

Subject:
Computer Science
Engineering
Material Type:
Activity/Lab
Author:
Stephanie Staub
Date Added:
03/11/2020
Capillarity—Measuring Surface Tension
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a short lesson on the difference between cohesive forces (the forces that hold water molecules together and create surface tension) and adhesive forces (the forces that causes water to "stick" to solid surfaces. The interaction between cohesive forces and adhesive forces causes the well-known capillary action. Students are also introduced to examples of capillary action found in nature and in our day-to-day lives.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Capillary Action in Sand
Read the Fine Print
Educational Use
Rating
0.0 stars

As part of a (hypothetical) challenge to help a city find the most affordable and environmentally friendly way to clean up an oil spill, students design and conduct controlled experiments to quantify capillary action in sand. Like engineers and entrepreneurs, student teams use affordable materials to design and construct models to measure the rate of capillary action in four types of sand: coarse, medium, fine and mixed. After observing and learning from a teacher-conducted capillary tube demonstration, teams are given a selection of possible materials and a budget to work within as they design their own experimental setups. After the construction of their designs, they take measurements to quantify the rate of capillary action, create graphs to analyze the data, and make concluding recommendations. Groups compare data and discuss as a class the pros and cons of their designs. Pre- and post-evaluations and two worksheets are provided.

Subject:
Career and Technical Education
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Yaqi Xiong
Date Added:
02/07/2017
Capturing the Sun's Warmth
Read the Fine Print
Educational Use
Rating
0.0 stars

In the exploration of ways to use solar energy, students investigate the thermal energy storage capacities of different test materials to determine which to use in passive solar building design.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
10/14/2015
The Carbon Cycle
Read the Fine Print
Rating
0.0 stars

This online lab exercise focuses on the processes involved in the Carbon cycle and the influences of human activity on those processes- especially as they relate to Earth's weather and climate. The fourth in a 10-part lab series on weather and climate, this lab exercise is designed for first and second year college geoscience students (majors and non-majors) as well as pre-service STEM teachers.

Subject:
Atmospheric Science
Geoscience
Physical Science
Material Type:
Activity/Lab
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Carbon Cycle Game
Read the Fine Print
Rating
0.0 stars

The carbon cycle game is a short digital game that helps you teach how carbon atoms move through various forms including soils, the ocean, plant and animal life and fossil fuels. Actions such as photosynthesis, plant and animal death and forest fires all convert carbon from one form into another. This is a card style game. It allows for single or multi players. Runs on a browser.

Subject:
Biology
Life Science
Material Type:
Game
Provider:
University of Wisconsin
Provider Set:
The Yard Games
Date Added:
08/04/2016
Carbon Cycles
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of energy cycles by learning about the carbon cycle. They will learn how carbon atoms travel through the geological (ancient) carbon cycle and the biological/physical carbon cycle. Students will consider how human activities have disturbed the carbon cycle by emitting carbon dioxide into the atmosphere. They will discuss how engineers and scientists are working to reduce carbon dioxide emissions. Lastly, students will consider how they can help the world through simple energy conservation measures.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Carbonyl-based π-conjugated materials: The future of lithium-ion batteries
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"For decades they’ve taken a backseat to their mineral counterparts. But today, organic materials are booming—not least of all for their applications in lithium-ion batteries. A new review article published in the journal ChemPlusChem discusses how one class of organics in particular is poised to yield high performance from a tiny but versatile package: carbonyl-based π-conjugated compounds. Like other organic materials, carbonyl-based π-conjugated materials present a unique and much-needed solution to the global energy crisis. Flexible, light, and naturally abundant, these compounds offer the prospect of nimble energy-storage systems with energy and power densities comparable to inorganic systems. What sets carbonyl-based π-conjugated materials apart from other organics is highly tunable electrochemical performance stemming from a versatile starting structure. The redox mechanism of carbonyls proceeds by a reversible one-electron reduction to form a radical mono-anion and the reverse reaction..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Chemistry
Physical Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
01/16/2020
Cardboard Automata
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Cardboard Automata are a playful way to explore simple machine elements while creating a mechanical sculpture. This activity was inspired by the Cabaret Mechanical Theatre, a group of automata builders based in England. Artists like Paul Spooner, Keith Newstead, and Carlos Zapata build beautiful narrative pieces using elegant mechanisms based on cams, gears, springs, and linkages. Working with simple materials, this activity is easy to get started, and may become as complex as your mechanical sculpture ideas.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Exploratorium
National Science Foundation
The Exploratorium
Date Added:
12/01/2012
The Cardiovascular System : Hematopoiesis - Making Blood (13:03)
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

In this video take a look at hematopoiesis (haematopoiesis), or the creation of blood. While we are still embryos the formation of blood can occur in multiple sites. After birth production primary takes place in red bone marrow.

All blood cells that are circulating derive from pluripotential hematopoietic cells also known as hematopoietic stem cells (HSCs). These stem cells can form any of the blood cells or other stem cells. Hematopoietic Growth Factor will help determine what the stem cell grows into.

There are three families that blood cells can grow up to become: 1) Erythroid cells, 2) Lymphocytes, and 3) Myelocytes.

Lesson 3 in our Cardiovascular System (Blood) series. This is part of our Anatomy and Physiology lecture series.

If this video helps you please be sure to LST -like subscribe and tell your friends. Your support helps us make more videos. For the complete series please visit http://mrfordsclass.net/

Blood Videos
-Introduction to Blood (13:01): http://youtu.be/-Y5U49E-CM4
-Composition of Blood (13:02): http://youtu.be/YHCIMKZ0zrg
-Hematopoiesis-Making Blood (13:03): http://youtu.be/sibrcrXHJGI
-Red Blood Cells (13:04): http://youtu.be/19_6kUCVYfk

Heart and Blood Vessels Videos
-Heart Fundamentals (14:01): http://youtu.be/Y335KJ-EuDw
-Layers of the Heart (14:02): http://youtu.be/8PlwFTwJRMQ
-Chambers in the Heart (14:03): http://youtu.be/SdNQtPzUfHg
-Introduction to Blood Vessels (14:08): http://youtu.be/GVs8cd6jv94
-Types of Blood Vessels (14:09): http://youtu.be/_jkQR8v-bAg
-Movement of Blood (14:11): http://youtu.be/x9dH5TpKntk

Subject:
Anatomy/Physiology
Life Science
Material Type:
Lecture
Provider:
Mr. Ford's Class
Author:
Scott Ford
Date Added:
10/05/2014
Career Readiness Workshop Playbook
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A Career Readiness Workshop is a Career Exploration experience on the continuum of Career Connected Learning. These workshops bring together students and industry professionals to take part in career readiness activities. Students network with professionals, take part in mock interviews, and generally build their confidence and skills related to interactions with potential employers. These events are a great way to help prepare students for meaningful and effective interactions with professionals. Industry professionals with an interest in supporting the talent pipeline and increasing the number of highly qualified young people in their local community also benefit greatly from a Career Readiness Workshop. At a typical Career Readiness Workshop -- which often includes dinner and networking-- industry representatives lead students through three interactive workshops over a three-hour period: Delivering an Elevator Pitch, Resume Best Practices, and Interview Strategies. This helps students develop a skill set to market the STEM skills they’ve attained through their studies. The event also gives opportunities for students and professionals to informally interact and network during dinner and after the workshops.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Teaching/Learning Strategy
Author:
Aujalee Moore
Date Added:
05/07/2024