Updating search results...

Search Resources

375 Results

View
Selected filters:
Oil Spill Cleanup
Read the Fine Print
Educational Use
Rating
0.0 stars

This hands-on experiment will provide students with an understanding of the issues that surround environmental cleanup. Students will create their own oil spill, try different methods for cleaning it up, and then discuss the merits of each method in terms of effectiveness (cleanliness) and cost. They will be asked to put themselves in the place of both an environmental engineer and an oil company owner who are responsible for the clean-up.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Sharon D. Perez-Suarez
Date Added:
10/14/2015
Household Energy Conservation and Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

Students complete three different activities to evaluate the energy consumption in a household and explore potential ways to reduce that consumption. The focus is on conservation and energy efficient electrical devices and appliances. The lesson reinforces the relationship between power and energy and associated measurements and calculations required to evaluate energy consumption. The lesson provides the students with more concrete information for completing their culminating unit assignment.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
IslandWood Professional Development Course: Community-Centered Climate Change for 6-8th Grade Educators
Unrestricted Use
CC BY
Rating
0.0 stars

During this course, participants will learn how to center investigations of local scientific phenomena in a Next Generation Science Standards storyline. Course educators will offer instructional strategies and climate and community data to help teachers connect to the interests and identities of students and support understanding of the impacts of climate change. In collaboration with fellow teachers, participants will imagine possibilities for this kind of teaching and learning in their own classrooms through brainstorming possible phenomenon-based storylines local to their own students.

Subject:
Education
Environmental Science
Environmental Studies
Life Science
Physical Science
Material Type:
Activity/Lab
Assessment
Lecture Notes
Author:
Brad Street
Date Added:
07/18/2022
Global Forest Watch
Read the Fine Print
Educational Use
Rating
0.0 stars

Global Forest Watch is an interactive, online forest monitoring and alert system that provides users globally with the information they need to better manage and conserve forest landscapes.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Material Type:
Reading
Simulation
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Global Forest Watch Partnership
Date Added:
05/13/2015
What's Down the Well?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about physical models of groundwater and how environmental engineers determine possible sites for drinking water wells. During the activity, students create their own groundwater well models using coffee cans and wire screening. They add red food coloring to their models to see how pollutants can migrate through the groundwater into a drinking water resource.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Water Quality Human Impact Mitigation Strategies
Unrestricted Use
CC BY
Rating
0.0 stars

These 6 slides include descriptions of, photos of, formative assessment for, and extension reading for 4 water 'clean-up' strategies. These strategies are: fountain or bubbler oxygenation, wood chip bioreactors, reverse osmosis, and ion exchange resins.

I use it with water quality testing activities, and data analysis activities to meet standard:
HS LS 2-7: Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
HS LS 2-2: Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
HS LS 2-1: Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.
Standards about materials cycling in the environment can also be supported using the Nitrogen Cycle.

Subject:
Biology
Ecology
Hydrology
Life Science
Physical Science
Material Type:
Reading
Author:
Ryan Richardson
Date Added:
08/25/2020
Introduction to Water Chemistry
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with examples of the types of problems that environmental engineers solve, specifically focusing on water quality issues. Topics include the importance of clean water, the scarcity of fresh water, tap water contamination sources, and ways environmental engineers treat contaminated water.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Jessica Ray
Date Added:
09/18/2014
Just Breathe Green: Measuring Transpiration Rates
Read the Fine Print
Educational Use
Rating
0.0 stars

Through multi-trial experiments, students are able to see and measure something that is otherwise invisible to them seeing plants breathe. Student groups are given two small plants of native species and materials to enclose them after watering with colored water. After being enclosed for 5, 10 and 15 minutes, teams collect and measure the condensed water from the plants' "breathing," and then calculate the rates at which the plants breathe. A plant's breath is known as transpiration, which is the flow of water from the ground where it is taken up by roots (plant uptake) and then lost through the leaves. Students plot volume/time data for three different native plant species, determine and compare their transpiration rates to see which had the highest reaction rate and consider how a plant's unique characteristics (leaf surface area, transpiration rate) might figure into engineers' designs for neighborhood stormwater management plans.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Sanitary Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course deals with the basic principles and design aspects of sanitary engineering infrastructure. This comprises: drinking water supply and treatment, sewerage and wastewater treatment. Study goals: Insight in technological aspects of the urban water infrastructure

Subject:
Applied Science
Career and Technical Education
Engineering
Environmental Studies
Material Type:
Activity/Lab
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
F.H.L.R. Clemens
J.C. van Dijk
Date Added:
03/07/2016
Let's Bag It
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe and discuss a vacuum cleaner model of a baghouse to better understand how this pollutant recovery method functions in cleaning industrial air pollution.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise W. Carlson
Gwendolyn Frank
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date Added:
10/14/2015
Powering the U.S.
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson provides students with an overview of the electric power industry in the United States. Students also become familiar with the environmental impacts associated with a variety of energy sources.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Frank Burkholder
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Air Pollution in the Pacific Northwest
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to measuring and identifying sources of air pollution, as well as how environmental engineers try to control and limit the amount of air pollution. In Part 1, students are introduced to nitrogen dioxide as an air pollutant and how it is quantified. Major sources are identified, using EPA bar graphs. Students identify major cities and determine their latitudes and longitudes. They estimate NO2 values from color maps showing monthly NO2 averages from two sources: a NASA satellite and the WSU forecast model AIRPACT. In Part 2, students continue to estimate NO2 values from color maps and use Excel to calculate differences and ratios to determine the model's performance. They gain experience working with very large numbers written in scientific notation, as well as spreadsheet application capabilities.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Farren Herron-Thorpe
Date Added:
09/18/2014
Nature Based Metropolitan Solutions
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How can ecosystems contribute to quality of life and a more livable, healthier and more resilient urban environment?

Have you ever considered all the different benefits the ecosystem could potentially deliver to you and your surroundings? Unsustainable urbanization has resulted in the loss of biodiversity, the destruction of habitats and has therefore limited the ability of ecosystems to deliver the advantages they could confer.

This course establishes the priorities and highlights the direct values of including principles based on natural processes in urban planning and design. Take a sewage system or a public space for example. By integrating nature-based solutions they can deliver the exact same performance while also being beneficial for the environment, society and economy.

Increased connectivity between existing, modified and new ecosystems and restoring and rehabilitating them within cities through nature-based solutions provides greater resilience and the capacity to adapt more swiftly to cope with the effects of climate change and other global shifts.

This course will teach you about the design, construction, implementation and monitoring of nature-based solutions for urban ecosystems and the ecological coherence of sustainable cities. Constructing smart cities and metropolitan regions with nature-based ecosystems will secure a fair distribution of benefits from the renewed urban ecology.

This course forms a part of the educational programme of the AMS Amsterdam Institute for Advanced Metropolitan Solutions and will present the state-of-the-art theories and methods developed by the Delft University of Technology and Wageningen University & Research, two of the founding universities of the AMS Institute.

Instructors, with advanced expertise in Urban Ecology, Environmental Engineering, Urban Planning and Design, will equip designers and planners with the skills they need for the sustainable management of the built environment. The course will also benefit stakeholders from both private and public sectors who want to explore the multiple benefits of restored ecosystems in cities and metropolitan regions. They will gain the knowledge and skills required to make better informed and integrated decisions on city development and urban regeneration schemes.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr.ir. T. Bacchin
Filippo Lafleur
Geert van der Meulen
Date Added:
08/09/2019
You Are What You Drink!
Read the Fine Print
Educational Use
Rating
0.0 stars

Contamination in drinking water sources or watersheds can negatively affect the organisms that come in contact with it. The affects can be severe causing illness or, in some cases, even death. It is important for people to understand how they can contribute to the contaminants in drinking water and what treatment can be done to counter these harmful effects. Students will learn about the various methods developed by environmental engineers for treating drinking water in the United States.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Household Energy Audit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review the electrical appliances used at home and estimate the energy used for each. The results can help to show the energy hogs that could benefit from conservation or improved efficiency.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Explore the Salish Sea - Unit 7: Migration
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Migration explores the routes, distances, and purposes for wildlife migration with a special focus on Pacific salmon. This iconic species of the Pacific Northwest has shaped life in Salish Sea watersheds since they first entered rivers and creeks to spawn, bringing their ocean-derived nutrients in reach of land animals, plants, and people. Nearly 1/4 of the nitrogen in the leaves of our giant temperate rainforest trees once swam in the sea as salmon. They are the reason for the great natural wealth of the Salish Sea and beyond.

Learning to identify habitat needs based on their specific migrations will empower students to identify ways they can improve salmon habitat near their own schools and possibly design and carry out a salmon habitat improvement project. Reach out to salmon experts in your community for support with this unit and project, from protecting storm drains to raising salmon in the classroom. Share your salmon project story along the way. Your school may just be featured as our next Salish Sea Heroes!

Subject:
Applied Science
Environmental Science
Life Science
Physical Science
Space Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Author:
Pacific Education Institute
SeaDoc Society
UC Davis Veterinary Medicine
Junior SeaDoctors
Date Added:
04/25/2023
Watt Meters to Measure Energy Consumption
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use watt meters to measure the power required and calculate energy used from various electrical devices and household appliances.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Multidisciplinary Research Methods for Engineers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The use of data to understand phenomena and evaluate designs and interventions in different disciplines is increasingly evident. As a result, engineers and other applied scientists frequently find themselves needing to collaborate in multidisciplinary fields when carrying out research to remain innovative.

This course will help you to become a successful multidisciplinary researcher in industry, non-profit, or academia, and be more efficient and successful as you will know where the pitfalls are! This course explains the fundamentals on how to plan and carry out state-of-the-art qualitative and quantitative research in different phases of an innovation or research project.

The course has been designed by a team of experienced, multidisciplinary researchers in education, engineering and research methodologies and will also feature experts in the field of research methodologies as guest lecturers. In the course you will be working towards creating a project plan for your research, giving you a head-start in your research project.

The interuniversity, interdisciplinary Leiden-Delft-Erasmus Center for Education and Learning is a leader in multidisciplinary technological research and innovation projects. Learning from leading experts in the field you will learn to apply the best practices in your own context.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Gillian Saunders
Jacqueline Wong
Marcus Specht
Martine Schophuizen
Date Added:
02/09/2023
PEI SOLS Middle School Food Waste (Spanish)
Unrestricted Use
CC BY
Rating
0.0 stars

El desperdicio de comida es un contribuyente mayor a los gases de efecto invernadero. La comida desperdiciada y los recursos usados en su producción son responsables por aproximadamente 8% de las emisiones globales de gases de efecto invernadero. En este caso, los estudiantes aprenderán sobre los recursos requeridos para producir comida siguiendo el ciclo del carbón y descubrirán cómo el desperdicio de comida contribuye al cambio climático. También aprenderán sobre la cadena de transporte de la granja a la mesa y cómo conducir una auditoría de desperdicio de comida. Finalmente, investigarán soluciones al problema de desperdicio de comida que pueden aplicar a sus propias vidas, su escuela y su comunidad.

Subject:
Environmental Science
Material Type:
Unit of Study
Author:
Pacific Education Institute
Date Added:
06/21/2021
Citizens Co-creating Sustainable Cities
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Around the world, major challenges of our time such as population growth and climate change are being addressed in cities. Here, citizens play an important role amidst governments, companies, NGOs and researchers in creating social, technological and political innovations for achieving sustainability.

Citizens can be co-creators of sustainable cities when they engage in city politics or in the design of the urban environment and its technologies and infrastructure. In addition, citizens influence and are influenced by the technologies and systems that they use every day. Sustainability is thus a result of the interplay between technology, policy and people’s daily lives. Understanding this interplay is essential for creating sustainable cities. In this MOOC, we zoom in on Amsterdam, Beijing, Ho Chi Minh City, Nairobi, Kampala and Suzhou as living labs for exploring the dynamics of co-creation for sustainable cities worldwide. We will address topics such as participative democracy and legitimacy, ICTs and big data, infrastructure and technology, and SMART technologies in daily life.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Huub Rijnaarts
Date Added:
07/18/2018