Updating search results...

Search Resources

2595 Results

View
Selected filters:
  • science
7.3 Metabolic Reactions
Unrestricted Use
CC BY
Rating
0.0 stars

Unit Summary
This unit on metabolic reactions in the human body starts out with students exploring a real case study of a middle-school girl named M’Kenna, who reported some alarming symptoms to her doctor. Her symptoms included an inability to concentrate, headaches, stomach issues when she eats, and a lack of energy for everyday activities and sports that she used to play regularly. She also reported noticeable weight loss over the past few months, in spite of consuming what appeared to be a healthy diet. Her case sparks questions and ideas for investigations around trying to figure out which pathways and processes in M’Kenna’s body might be functioning differently than a healthy system and why. 
Students investigate data specific to M’Kenna’s case in the form of doctor’s notes, endoscopy images and reports, growth charts, and micrographs. They also draw from their results from laboratory experiments on the chemical changes involving the processing of food and from digital interactives to explore how food is transported, transformed, stored, and used across different body systems in all people. Through this work of figuring out what is causing M’Kenna’s symptoms, the class discovers what happens to the food we eat after it enters our bodies and how M’Kenna’s different symptoms are connected.
This unit builds towards the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-LS1-3, MS-LS1-5, MS-LS1-7, MS-PS1-1, MS-PS1-2. The OpenSciEd units are designed for hands-on learning, and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.
Additional Unit InformationNext Generation Science Standards Addressed in this UnitPerformance ExpectationsThis unit builds toward the following NGSS Performance Expectations (PEs):

Subject:
Physical Science
Material Type:
Activity/Lab
Lesson
Module
Provider:
OpenSciEd
Date Added:
09/10/2019
8.2 Sound Waves
Unrestricted Use
CC BY
Rating
0.0 stars

Unit Summary
In this unit, students develop ideas related to how sounds are produced, how they travel through media, and how they affect objects at a distance. Their investigations are motivated by trying to account for a perplexing anchoring phenomenon — a truck is playing loud music in a parking lot and the windows of a building across the parking lot visibly shake in response to the music.
They make observations of sound sources to revisit the K–5 idea that objects vibrate when they make sounds. They figure out that patterns of differences in those vibrations are tied to differences in characteristics of the sounds being made. They gather data on how objects vibrate when making different sounds to characterize how a vibrating object’s motion is tied to the loudness and pitch of the sounds they make. Students also conduct experiments to support the idea that sound needs matter to travel through, and they will use models and simulations to explain how sound travels through matter at the particle level.
This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS4-1, MS-PS4-2. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.

Subject:
Physical Science
Material Type:
Activity/Lab
Lesson
Module
Provider:
OpenSciEd
Date Added:
09/10/2019
8th Stan
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

8th Standard

Science Textbook Lesson

Chapter 11

Force & Pressure

NCERT Syllabus

Subject:
Applied Science
Material Type:
Diagram/Illustration
Textbook
Date Added:
07/11/2019
ABO Blood Groups and How They Contribute to Blood Transfusions
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson will demonstrate why blood transfusions are possible between certain types of blood. ABO blood types will be reviewed and students will determine which blood types are the universal donor and recipient. This lesson was adapted from blood types lesson, Discovery Science Center, 2500 N Main St Santa Ana, CA 92705. This lesson results from a collaboration between the Alabama State Department of Education and ASTA

Subject:
Life Science
Material Type:
Lesson Plan
Provider:
Alabama Learning Exchange (ALEX)
Date Added:
04/29/2019
AFNI Training Bootcamp
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This training course is an introduction to the use of the AFNI software suites for the analysis of functional MRI (fMRI) data. It is not intended as an introduction to how fMRI works but is aimed at people who are already doing fMRI data analysis, or those who will be in the near future. 
AFNI (Analysis of Functional NeuroImages) is a leading software suite of C, Python, and R programs and shell scripts, primarily developed for the analysis and display of anatomical and fMRI data. It is freely available for research purposes. 
This event was organized by the Center for Brains, Minds, and Machines (CBMM) Trainee Leadership Council.
CBMM is a multi-institutional NSF Science and Technology Center headquartered at MIT that is dedicated to developing a computationally based understanding of human intelligence and establishing an engineering practice based on that understanding. CBMM brings together computer scientists, cognitive scientists, and neuroscientists to create a new field—the science and engineering of intelligence.

Subject:
Applied Science
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chen, Gang
Glen, Daniel
Reynolds, Rick
Date Added:
02/01/2018
ASTR 1020 - Lab 10: The Search for Exoplanets
Unrestricted Use
CC BY
Rating
0.0 stars

Most exoplanets are found through indirect methods: measuring the dimming of a star that happens to have a planet pass in front of it, called the transit method, or monitoring the spectrum of a star for the tell-tale signs of a planet pulling on its star and causing its light to subtly Doppler shift. Space telescopes have found thousands of planets by observing “transits,” the slight dimming of light from a star when its tiny planet passes between it and our telescopes. Other detection methods include gravitational lensing, the so-called “wobble method.”---------------------------------------Distant Nature: Astronomy Exercises 2016 by Stephen Tuttle under license "Creative Commons Attribution Non-Commercial Share Alike".

Subject:
Astronomy
Material Type:
Activity/Lab
Author:
Hollyanna White
Date Added:
05/26/2022
ASTR 1020 - Lab 11: Your Birthday Sky with Stellarium
Unrestricted Use
CC BY
Rating
0.0 stars

Using the planetarium program Stellarium, you will display the evening sky just after sunset for the date and location of your birthplace.  You will determine the times of the sunrise, sunset, and moon rise on your birthday, note the phase of the moon, and observe planetary positions and visibility.   ---------------------------------------Distant Nature: Astronomy Exercises 2016 by Stephen Tuttle under license "Creative Commons Attribution Non-Commercial Share Alike".

Subject:
Astronomy
Material Type:
Activity/Lab
Author:
Hollyanna White
Date Added:
01/28/2022
ASTR 1020 - Lab 1: Introduction to Stellarium Software
Unrestricted Use
CC BY
Rating
0.0 stars

Welcome to Astronomy 1020 Lab 1! The Introduction to Stellarium Software lab will cover the installation, navigation, and use of Stellarium, the software which will be used to complete ASTR 1020 lab work.Stellarium [Copyright © 2004-2011 Fabien Chereau et al.]

Subject:
Astronomy
Material Type:
Activity/Lab
Author:
Hollyanna White
Date Added:
11/29/2021
ASTR 1020 - Lab 2: Kepler's Law with Stellarium
Unrestricted Use
CC BY
Rating
0.0 stars

This activity will focus on Kepler's Law which concerns planetary motion.---------------------------------------Distant Nature: Astronomy Exercises 2016 by Stephen Tuttle under license "Creative Commons Attribution Non-Commercial Share Alike".

Subject:
Astronomy
Material Type:
Activity/Lab
Author:
Hollyanna White
Date Added:
01/28/2022
ASTR 1020 - Lab 3: Expansion of the Universe
Unrestricted Use
CC BY
Rating
0.0 stars

Edwin Hubble examined the spectra of many galaxies, looking for the red (longer wavelengths) or blue (shorter wavelengths) shifts in the spectra, indicating relative motion. To his surprise, not only did all of the galaxies appear to be moving, but all were moving away from us, no matter the direction of the galaxy. In addition, he found most galaxies exhibited a redshift, and the redshift was larger the further it was from our galaxy.Distant Nature: Astronomy Exercises 2016 by Stephen Tuttle under license "Creative Commons Attribution Non-Commercial Share Alike".

Subject:
Astronomy
Material Type:
Activity/Lab
Author:
Hollyanna White
Date Added:
03/04/2022
ASTR 1020 - Lab 4: Solar Rotation and Sunspots
Unrestricted Use
CC BY
Rating
0.0 stars

Galileo, in 1612, demonstrated that the Sun rotates on its axis with a rotation period of approximately one month. Our star turns in a west-to-east direction, like the orbital motions of the planets. The Sun, however, is a gas and does not have to rotate rigidly, the way a solid body like Earth does. Modern observations show that the Sun’s rotation speed varies according to latitude; that is, it’s different as you go north or south of the Sun’s equator.  Between 1826 and 1850, Heinrich Schwabe, a German pharmacist and amateur astronomer kept daily records of the number of sunspots. What he was looking for was a planet inside the orbit of Mercury, which he hoped to find by observing its dark silhouette as it passed between the Sun and Earth. Unfortunately, he failed to find the hoped-for planet, but his diligence paid off with an even more important discovery: the sunspot cycle. He found that the number of sunspots varied systematically, in cycles about a decade long. In this laboratory, you will engage in tracking the Sun like Galileo and Schwabe during a six-day cycle and then do a simple calculation of the rotational period of our sun.---------------------------------------Distant Nature: Astronomy Exercises 2016 by Stephen Tuttle under license "Creative Commons Attribution Non-Commercial Share Alike".

Subject:
Astronomy
Material Type:
Activity/Lab
Author:
Hollyanna White
Date Added:
01/28/2022