All resources in OpenStax Biology 2e

Cell BioCams

(View Complete Item Description)

Welcome to the CELLS alive BioCams. In these BioCams, you will get to learn about cancer and bacteria cells. However, these are a bit different from "livecams" you might find elsewhere on the web - these repeat at daily or shorter intervals in order to convey information on biological rhythms.

Material Type: Simulation

Cellular Respiration

(View Complete Item Description)

Cellular respiration is the process by which our bodies convert glucose from food into energy in the form of ATP (adenosine triphosphate). Start by exploring the ATP molecule in 3D, then use molecular models to take a step-by-step tour of the chemical reactants and products in the complex biological processes of glycolysis, the Krebs cycle, the Electron Transport Chain, and ATP synthesis. Follow atoms as they rearrange and become parts of other molecules and witness the production of high-energy ATP molecules.

Material Type: Lecture Notes, Simulation

Author: The Concord Consortium

Genetic Origins

(View Complete Item Description)

The goal of the Genetic Origins Program is to allow students to use their own DNA variations (polymorphisms) as a means to explore our shared genetic heritage and its implications for human health and society. Genetic Origins focuses on two types of DNA variations: an Alu insertion polymorphism on chromosome 16 (PV92) and single nucleotide polymorphisms (SNPs) in the control region of the mitochondrial (mt) chromosome. With two alleles and three genotypes, PV92 is a simple genetic system that illustrates Mendelian inheritance on a molecular level. PV92 data is readily analyzed using population statistics. The mt control region is one of the simplest regions of human DNA to sequence. With a high mutation rate, the mt control region is the "classical" system for studying human and primate evolution. The Genetic Origins site and linked Bioservers site have all the information needed for students to perform the Alu and mt DNA experiments and analyze the results - including online protocols, reagents, animations and videos explaining key concepts, and database tools.

Material Type: Activity/Lab, Simulation

Genetics

(View Complete Item Description)

This activity begins with sections that help students to understand basic principles of genetics, including (1) how genotype influences phenotype via the effects of genes on protein structure and function and (2) how genes are transmitted from parents to offspring through the processes of meiosis and fertilization. Then, a coin flip activity models the probabilistic nature of inheritance and Punnett square predictions; this helps students understand why the characteristics of children in many real families deviate from Punnett square predictions. Additional concepts covered include polygenic inheritance, incomplete dominance, and how a new mutation can result in a genetic condition that was not inherited. This activity helps students meet the Next Generation Science Standards.

Material Type: Activity/Lab, Lesson Plan, Simulation

Authors: Ingrid Waldron, Jennifer Doherty, Scott Poethig

Activities for engaging students in Biology using animations

(View Complete Item Description)

This resource includes three classroom-tested activities that were created using the ideas outlined in the article “Getting more out of animations” by Pruneski and Donovan (in press). The driving idea is that animations can be a powerful tool for learning complex biological processes, but when students are passive viewers, it limits their usefulness and may become simply another source of content to be memorized. Engaging students with animations can greatly increase the amount of information that can be extracted and can help students develop important learning skills that can be useful in the future. These sample assignments help make the use of animations more effective and active by structuring student viewing using guiding questions. These questions focus on particular objects, features, or steps of the process to help students accomplish specific learning objectives for that topic. The assignments also help students think about animations as media objects that are created by scientists and animators using specific tools and conventions that affect how the process is depicted and the ways in which it should be viewed. Lastly, by comparing and contrasting multiple animations of the same process, students can extract more information, overcome the limitations of each individual animations, and generate a more complete view of the process.

Material Type: Activity/Lab, Homework/Assignment

Authors: Stacey Kiser, Sam Donovan, Justin Pruneski

Logic Puzzle

(View Complete Item Description)

This activity is intended as an exercise in deductive logic. The students perform a series of "experiments" in which they try to identify which predators eat which specific prey (Each predator eats one and only one prey). The instructions are on the site. students may also click on the blue square to make the game full screen. A worksheet is added for students to record their results. This also is an exercise in articulating the logic used in the study. (Most students have no trouble figuring out the relationships). Writing down their results and conclusions is a bit trickier. ) This has been used for community college classes. It can be used at lower levels such as high school or even middle school without the worksheet.

Material Type: Game

Author: Arthur Wohlwill

My Personal Zoo Biology Activity

(View Complete Item Description)

This individual or group activity involves reading about the human microbiome, followed by explorations at University of Utah's Genetic Science Learning Center website. It was developed by Ryan Chabarria, Lone Star College- Kingwood; Jennifer Kneafsey, Tulsa Community College; Catherine Parmiter, Estrella Mountain Community College; Natalie Russell, Tarrant County College; and Andrew Tag, Texas A&M University.

Material Type: Activity/Lab

Author: OpenStax, Rice University

Anatomy and Physiology I Lab

(View Complete Item Description)

Syllabi and Lab Exercises for SCI 201: Anatomy and Physiology I. This course is designed to provide students with a basic understanding of the structure, function and disorders of the human body. Topics include an overview of the integumentary, skeletal, muscular, and nervous systems, as well as a discussion of tissues and special senses. A three-hour lab session is required each week. Course materials written by Maria Carles and Georgia Thoidis, content uploaded to OER Commons by Victoria Vidal.

Material Type: Full Course

Author: Maria Carles

Biology, Preface to Biology, Preface to Biology

(View Complete Item Description)

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Material Type: Module