All resources in Content in Context SuperLessons

Seismic Sensations

(View Complete Item Description)

Our school, Kelly Middle School, is one of the oldest middle school buildings in 4J (primary construction was completed in 1945). Each year we practice earthquake drills. Why? Why should we be concerned about earthquakes? Where might an earthquake occur in the northwest area? Might it be minor or violent? How might this be measured? Is an earthquake a singular event, or a series of events? What increases or decreases an earthquake hazard? Do we have any early-warning systems? Is the school earthquake drill correct? Considering these questions students need to develop an understanding of how to prepare for, and react to an earthquake event. When students are comfortably informed, who should they report to?

Material Type: Activity/Lab, Lesson Plan, Reading, Simulation, Teaching/Learning Strategy, Unit of Study

Dream It, Build It, Launch It!

(View Complete Item Description)

This Super Lesson utilizes Project Based Learning to assist learners with designing, building, and testing flying contraptions as an introduction to Engineering. The goal of this project is to engage students in collaborative team work and to introduce students to the Science and Engineering Practices: Asking Questions and Defining Problems, Planning and Carrying Out Investigations, and Constructing Explanations and Designing Solutions. We have offered this Super Lesson as an 8-week elective course, developing and strengthening student interest in applied Math and Science topics. It could also be offered within upper elementary or middle school Science and Math courses. In addition, each week’s topic could be used as a stand alone mini-lesson if time is limited. We have worked to include multiple options within this unit to make it accessible to both general education and special education programs, including recommendations for modifications and extensions.

Material Type: Activity/Lab, Interactive, Lesson Plan, Unit of Study

Sort It Out

(View Complete Item Description)

In this project, students will use knowledge of electricity and electromagnetism to collaboratively design and test a model of a magnetic recycling sorter. They will evaluate the performance of their models and propose further modifications based on the output of their magnetic device measured in mT using a Vernier probe. They will also physically test their magnets on a model of a conveyor belt containing recyclable items. Students will track their data from both tests, with the ultimate goal of creating the strongest and most effective magnet with given materials. Finally, students will present their findings and proposed final design to peers and community partners involved in the recycling industry. The entire process takes about 6 weeks. The unit is a great fit for standards within energy and engineering & design.

Material Type: Activity/Lab, Assessment, Diagram/Illustration, Homework/Assignment, Lesson Plan, Reading, Simulation, Student Guide, Teaching/Learning Strategy

Authors: Autumn Erickson, Rick Haas, Sara Burgin

Sand, Wind, and Your School Lunch

(View Complete Item Description)

Last year the Siuslaw 97J School District changed our food service operation from a national supplier (Chartwell’s) to in-house food service. Our Food Service Manager instituted an organic philosophy and wanted to source local produce. Utilizing our school garden program we now help supply fresh produce for our Siuslaw Elementary School cafeteria. Crop production is stronger in the 4/5 wing because of wind protection from the building. Florence experiences high winds and we are located close to the beach so we have constant sand blowing into our crops. The K-3 garden beds do not have the same protection as the 4/5 beds, and as a result have a lower yield. Our goal is to have students design and engineer wind barriers for these beds and then present the best solutions to our school board so that we can get funding to implement our ideas. This project can be used in any school with a garden by using preexisting barriers on a the school property. The unique environment of the school would dictate the lessons required to be adapted to fit the environmental needs of the community. If the school is lacking a garden, the students can focus on an at home garden project.

Material Type: Activity/Lab

Authors: Gina Halpin, Greg Jorgenson

Mixtures Blast off

(View Complete Item Description)

As students are learning about substances, mixtures, and solutions, they will participate in several experiments that involve chemical reactions using regular household products. Some experiments will produce gas or create something that will grow. Students will work in groups of 2-3 students to make a car move using the result of a chemical reaction from combining two or more household substances. They will present their project to the class.

Material Type: Activity/Lab

Authors: Angela Jaros, Suzanne Belnap

Weather you like it or not!

(View Complete Item Description)

Learning Goals/Outcomes/Objectives: Observable features of the student performance by the end of the grade: 1). Obtaining information: Students use books and other reliable media to gather information about: i. Climates in different regions of the world (e.g., equatorial, polar, coastal, mid-continental). ii. Variations in climates within different regions of the world (e.g., variations could include an area’s average temperatures and precipitation during various months over several years or an area’s average rainfall and temperatures during the rainy season over several years). 2 Evaluating information a Student's combine obtained information to provide evidence about the climate pattern in a region that can be used to make predictions about typical weather conditions in that region. 3 Communicating information a Students use the information they obtained and combined to describe*: i. Climates in different regions of the world. ii. Examples of how patterns in climate could be used to predict typical weather conditions. iii. That climate can vary over years in different regions of the world.

Material Type: Activity/Lab

Move It

(View Complete Item Description)

The focus of this unit is to introduce the concepts of force and motion. Specifically this unit will address the forces of push, pull, gravity, and work. It also introduces students to the concepts of friction and slope. The unit begins with an introduction to the scientific method and addresses the differences between scientists and engineers. Students will be both scientists and engineers while completing this unit.

Material Type: Activity/Lab

Authors: Jill Durham, Katrina Burkhardt

Earthquake 8.2

(View Complete Item Description)

An engineering and design lesson for middle school (our 7th grade standards). In the aftermath of a natural disaster, can you engineer a device that will keep medicine within a 40-60°F range using natural resources from the biome you live in, and/or debris created by the disaster for three days, until the Red Cross can arrive? You are a team of relief workers in __________________after a major earthquake/tsunami has occurred. Your team lead as just told you about a young women with diabetes has been injured and needs insulin to be delivered __________ miles away (no open roads). Your team will need to research, design, and build a portable device to keep the insulin between _____ and ______ °(F/C) for _____ days. Once you return you will present the effectiveness of your device to your lead and a team other relief workers showing your both your design/device and explaining the process.

Material Type: Activity/Lab

Authors: Bobbi Dano, Jen Bultler

Keep Salmon Thriving

(View Complete Item Description)

We have been rearing salmon in our classroom for a long time, and the students love it. The project before this point was very teacher lead and much of the care, and set up was done for the students. We are excited to make a student-led project based unit that will better cover the content and incorporate the standards we are looking to teach.

Material Type: Activity/Lab

Butting Heads

(View Complete Item Description)

8th grade student will apply Newton’s Laws to design, test and evaluate materials to create the most protective helmet for an activity of their choice. Students will use force sensors and Vernier software to analyze the force reduction for their helmets. The culmination of this project is for students to write and present a sales pitch to promote their helmet to their peers at an annual "conference."

Material Type: Activity/Lab, Lesson Plan

Authors: Erik Wright, Johannah Withrow-Robinson, Zach Adler