Unit 3 Part 1: Boolean Logic and Logic Circuits STUDY GUIDE

1. Define, write the mathematical notation, and give an example of each of the following.

Logically Equivalent:
Two statements that produce the same truth table
Tautology:
All outputs are true regardless of inputs. A statement that always evaluates the true.

if $S \rightarrow t$, then ers $\sim S \rightarrow N t$ /negation of if then

$$
(0 \text {-together } \mid \underset{\text { contrapositive: }}{\text { converse: }} / \text { switch if) then }
$$

Contrapositive:

$$
N t \rightarrow N S
$$

2. Fill in the following truth table.

p	q	$p \wedge q$	$q \rightarrow p$	$\sim(q \rightarrow p)$	$(p \wedge q) \leftrightarrow \sim(q \rightarrow p)$
T	T	T	T	F	F
T	F	F	T	F	T
F	T	F	F	T	F
F	F	F	T	F	T

3. Construct a truth table for $(p \leftrightarrow q) \vee(p \rightarrow(\sim q))$

4. State the eight logical equivalences presented in class.

5. Draw a circuit diagram for $\sim((\sim p \vee q) \wedge(p \vee \sim q))$. Start at end

6. Rewrite the statement to eliminate the use of the biconditional and then draw a circuit diagram for $(p \vee q) \leftrightarrow \sim p$.

$$
5 \sim \sim((\sim p \vee q) \wedge(p v \sim q)) .
$$

8. Write a logic statement for the following circuit diagram.

9. Use this circuit diagram to answer the following questions.

a. Write the logic statement the circuit represents.

c. Find a simpler statement that is logically equivalent to the statement in part a.

d. Draw a circuit diagram of the statement in part c.

