Unit 3 Part 1: Boolean Logic and Logic Circuits STUDY GUIDE

1. Define, write the mathematical notation, and give an example of each of the following.

Logically Equivalent: Two statements that produce the same truth table Tautology: Dutputs are true regardless of inputs. A statement that always evaluates the true. Inverse: $if S \rightarrow f, fhen \sim S \rightarrow M f/Negation of if then$ $(0-together/L \rightarrow S) f(SWitch if f, fhen)$ All outputs are true regardless of inputs. A statement that always evaluates the true. Contrapositive:

~+>~>

2. Fill in the following truth table.

p	q	$p \land q$	$q \rightarrow p$	$\sim (q \rightarrow p)$	$(p \land q) \nleftrightarrow \sim (q \to p)$
T	Τ			F	T T
T	F	F	T	F	Τ
F	Ţ	F	F	Т	F
F	F	F	Т	F	T

3. Construct a truth table for $(p \leftrightarrow q) \lor (p \rightarrow (\sim q))$

(P => 9) V (P=>

6. Rewrite the statement to eliminate the use of the biconditional and then draw a circuit diagram for $(p \lor q) \Leftrightarrow \sim p$.

 $\sum ~ \sim ((\sim p \lor q) \land (p \lor \sim q)).$

 $\sim ((\sim p \lor q) \land (p \lor \sim q)).$

9. Use this circuit diagram to answer the following questions.

d. Draw a circuit diagram of the statement in part c.

