Solving Logic Problems using Truth Tables

Solving Logic Problems using Truth Tables

Defining a Logic Problem

Selecting and Using an appropriate Truth Table

Using Truth Tables to determine the solution to a Logic Problem

Implementing the solution using hardware (engineering)

Implementing the solution using software (computer science)

Defining a Logic Problem

The assumption for this lesson is that a logic problem consists of

- Binary inputs all inputs are yes/no, on/off, or true/false inputs
- Binary outputs the output(s) are yes/no, on/off, or true/false
- The state of the output is based on the state of the inputs

Example: If the burglar alarm is engaged and a window is open or motion is detected, sound the alarm.

Identify the Inputs and Outputs

For each input and output, identify what constitutes on and off (true and false).

Example: If the burglar alarm is turn on and a window is open or motion is detected, sound an audible alarm.

Inputs

- Burglar Alarm: 1 Alarm On, 0 Alarm Off
- Window: 1 Closed, 0 Open
- Motion Detector: 1 Motion, 0 No Motion

Outputs

• Alarm: 1 – On, 0 – Off

Select an appropriate Truth Table

The appropriate Truth Table is based on the number of inputs

Two Input	ts	Th	ree	Inpu	its			Fou	r Inp	uts	
X Y Out	t	х	Y	Z	Out		W	х	Y	Z	Out
0 0		0	0	0			0	0	0	0	
0 1		0	0	1			0	0	0	1	
1 0		0	1	0			0	0	1	0	
1 1		0	1	1			0	0	1	1	
	_	1	0	0			0	1	0	0	
		1	0	1			0	1	0	1	
		1	1	0			0	1	1	0	
		1	1	1			0	1	1	1	
							1	0	0	0	
							1	0	0	1	
							1	0	1	0	
							1	0	1	1	
							1	1	0	0	
							1	1	0	1	

Fill in the Truth Table

Х	Y	Z	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- X = Burglar Alarm: 1 Alarm On, 0 Alarm Off
- Y = Window: 1 Closed, 0 Open
- Z = Motion Detector: 1 Motion, 0 No Motion

Out = Alarm: 1 - On, 0 - Off

Document the Solution

Х	Y	Z	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Identify the inputs that cause the output to be 1. These are the min-terms.

Write the equation for each min-term. If an input is 1, write the variable name. If the input is 0, write the inverse of the variable name. If X = 0, use \overline{X} If X = 1, use X Inputs are AND'ed (the first min-term is $X * \overline{Y} * \overline{Z}$)

Combine min-terms to form the equation Min-terms are OR'ed The full solution is $X\overline{Y}\overline{Z} + X\overline{Y}Z + XYZ$

Simplify the Solution

Solutions can be simplified using Boolean Algebra or Karnaugh Mapping. These topics are beyond the scope this lesson, therefore this lesson will use unsimplified logic expressions.

 $X\bar{Y}\bar{Z} + X\bar{Y}Z + XYZ$

1) Invert any inputs that have to be inverted using an Inverter Gate

 $X\bar{Y}\bar{Z} + X\bar{Y}Z + XYZ$

2) AND the inputs to form a min-term using an AND Gate

 $X\bar{Y}\bar{Z} + X\bar{Y}Z + XYZ$

3) OR the min-terms to form the solution using an OR Gate

Test the Solution (Software)

 $X\bar{Y}\bar{Z} + X\bar{Y}Z + XYZ$

Define variables for each input.
A common practice is name the variable after the positive (true) state

Test the Solution (Software)

 $X\bar{Y}\bar{Z} + X\bar{Y}Z + XYZ$

1) Invert any inputs that have to be inverted using the inversion operator

not windowClosed

 $X\bar{Y}\bar{Z} + X\bar{Y}Z + XYZ$

2) AND the inputs to form a min-term using AND operators

	+ ·
and T Motio	+ •

alarmOn and not windowClosed and not motion alarmOn and not windowClosed and motion

alarmOn and windowClosed and motion

Test the Solution (Software)

 $X\bar{Y}\bar{Z} + X\bar{Y}Z + XYZ$

3) OR the min-terms to form the solution using an OR Gate

(clamOn - and - Nor (windowClosed - Nor (motion -	windowCound - motion -

(alarmOn and not windowClosed and not motion) or (alarmOn and not windowClosed and motion) or (alarmOn and windowClosed and motion)

References

Digital Logic Circuits created in National Instruments Multisim

Block-Based Code created in littleBits Code Kit

Text-Based Code created in Notepad++