AP CSP	Name:
Unit 2 Part B: Boolean Logic	
and Logic Gates	Date:
Mr. Svitilla	

- 1. Name and define this symbol, , used in the Boolean Logic system we studied. (4 points)
- 2. Define the inverse, converse, and contrapositive of $\mathcal{T} \longrightarrow S$. (6 points)

Inverse:

Converse:

Contrapositive:

For the following true/false questions construct a truth table if needed. (1 point)

- 3. T or F: A conditional statement and the contrapositive of the same statement are logically equivalent.
- 4. T or F: The inverse of a conditional statement and the converse of the same statement are logically equivalent.
- 5. T or F: The inverse of a conditional statement and the contrapositive of the same statement are logically equivalent.

p	q	$p \lor q$	$\sim (p \lor q)$	$p \rightarrow q$	$\sim (p \lor q) \otimes (p \twoheadrightarrow q)$

6. Fill in the following truth table. (6 points)

7. Define **tautology** and give an example with a truth table of a **tautology**. (4 points)

8. Construct a truth table for $(\sim p \leftrightarrow q) \lor \sim (\sim p \land q)$ (8 points)

Matching: match a statement on the left with a statement on the right that are form a logical equivalence. A choice may be used more than once or not at all. (2 points each)

9. $\sim p \rightarrow \sim q$ _____ A. $\sim p \otimes \sim q$ B. $\sim p \vee \sim q$ 10. $\sim (p \otimes q)$ _____ C. $\sim p \wedge \sim q$ D. $p \rightarrow q$ E. $q \rightarrow p$ F. $p \Leftrightarrow q$ 12. $\sim (p \vee q)$ _____ 13. $\sim (p \wedge q)$ _____ 14. Draw a logic gate diagram for each of the following statements (3 points each)

a.
$$(\sim p \land q) \lor \sim (p \land q)$$

b.
$$p \lor (\sim p \land \sim (q \lor (p \land q)))$$

c.
$$(((p \lor q) \land (p \lor \sim q)) \lor ((p \otimes q) \land (p \otimes \sim q)))$$

15. Rewrite the statement to a logically equivalent statement that eliminates the use of the conditional and biconditional. (4 points each)

a.
$$p \rightarrow \sim (p \land q)$$

b.
$$(p \otimes q) \nleftrightarrow q$$

16. Simplify $(p \otimes q) \leftrightarrow (p \lor q)$ using logical equivalences or a truth table and then draw a logic gate diagram of the simplified statement. (8 points)

Simplified statement:

Circuit Diagram:

17. Write the logic statement for the following logic gate diagram. (6 points)

18. Use this logic gate diagram to answer the following questions. (4 points each)

- a. Write the logic statement the circuit represents.
- b. Create a truth table for the statement.

- c. Find a simpler statement that is logically equivalent to the statement in part a.
- d. Draw a logic gate diagram of the statement in part c.