Name: _____ Date: _____

Part 1: Number Bases

1. Fill in the following decimal, hexadecimal binary table for 1 to 15. (4 points)

Dec	Hex	Bin	Dec	Hex	Bin
0			8		
1			9		
2			10		
3			11		
4			12		
5			13		
6			14		
7			15		

Convert the following. (3 pts each)

11 0010 $_{\text{bin}}$ to dec 2.

3. F50_{hex} to dec AP Computer Science Principles Unit 1B: Computing Mathematics Test 2 Mr. Svitilla

4. 3210_{Four} to dec

5. 83_{dec} to bin

AP Computer Science Principles Unit 1B: Computing Mathematics Test 2 Mr. Svitilla

6. 8400_{dec} to hex

7. Convert the following binary number directly to a hexadecimal number: (3 points)

0010 1010 1111_{bin}

8. Convert the following 2 digit hexadecimal number directly into an eight bit binary number. (3 points)

 $D0_{hex}$

AP Computer Science Principles Unit 1B: Computing Mathematics Test 2 Mr. Svitilla

Part 2: Modular Arithmetic (3 points each)

- 9. $33 \pmod{5} \equiv$
- 10. $4 + 7 \pmod{2} \equiv$
- 11. $14 8 \pmod{8} =$
- 12. $77 \pmod{7} \equiv$
- 13. $185 \pmod{19} =$
- 14. Define what it means for a whole number, a, to be divisible by another whole number, b, in terms of mod arithmetic.(2 points)

a is divisible by b if

AP Computer Science Principles Unit 1B: Computing Mathematics Test 2

Mr. Svitilla

Part 3: String Operators Match each of the following string operators to its description by writing the letter next to each operation (2 points each) 15. Two's Compliment

- 16. Reverse
- 17. Checksum
- 18. String length
- 19. Most Significant Bit
- 20. Least Significant Bit
- 21. Concatenate
- 22. Pad

- A. Each bit of a binary string changed to the opposite bit value
- B. The leftmost bit
- C. The rightmost bit
- D. The number of characters in a string
- E. Left fill zeros till the string is the desired length
- F. The characters of a string written in the opposite order
- G. The sum of the bit values of a string
- H. Two strings combined into one string with the first string written to the left of the second string
- 23. Transpose the following strings two places. (4 points)
 - a. 1111 0100
 - b. today
- 24. Split the following strings into three strings. (4 points)
 - a. 987654321
 - b. 1011 0110

AP Computer Science Principles Unit 1B: Computing Mathematics

Test 2 Mr. Svitilla

- 25. Given the following string 1011 0011 1000 1000 0111 0110 (5 points)
 - a. What is the string length?
 - b. How many bytes of information does it contain?
 - c. What is the value of the most significant bit (MSB)?
 - d. What is the value of the least significant bit (LSB)?
 - e. What is the value of the checksum?

AP Computer Science Principles Unit 1B: Computing Mathematics Test 2 Mr. Svitilla Part 4: Time Complexity Match each of the following time complexities to its Big-O notation representation. (1 point each)

26. Constant	
27. Log	A. $O(n!)$
28. Root	B. $O(\sqrt[x]{n})$
29. Linear	C. $O(n)$ D. $O(1)$
30. Lin-Log	E. $O(n^x)$
	F. $O(n \log n)$
31. Exponential	$G. O(\log n)$
32. Polynomial	$H. O\bigl(2^n\bigr)$

^{33.} Factorial

- 34. Which two time complexities above are interchanged if the list is ordered from fastest to slowest. (2 points)
- 35. What two time complexities are a special case of a complexity above, where x is in the Big-O notation is 2? (2 points)

AP Computer Science Principles Unit 1B: Computing Mathematics Test 2

Mr. Svitilla

- 36. The tables below relates the complexity of an algorithm's input set to the number of steps the task requires to complete.
 - a. Below each set calculate the incremental change. (4 points)
 - b. Indicate whether the incremental change is near zero, near constant (non-zero), or increasing. (4 points)
 - c. Write the Big-O notation or function name representing the time complexity of the algorithm. (2 point)

Set A

Input Set Complexity Steps to complete

1	2	3	4	5	6	7	8
8	14	20	26	34	40	46	52

Match each time complexity to its search algorithm.

37. Worst Case Hash Table	A. $O(n)$
38. Average Case Hash Table	B. <i>O</i> (1)
39. Worst Case Binary	C. $O(n^x)$
40. Worst Case Linear	$D_{\cdot} O(n \log n)$
	$E. O(\log n)$

AP Computer Science Principles Unit 1B: Computing Mathematics Test 2 Mr. Svitilla Match each search algorithm to its description. (1 point each)

- 41. Linear
- 42. Binary
- 43. Hash Table

- A. Data is associated to a number, called an index, by a function and data is retrieved by finding the appropriate index.
- B. Each piece of data is examined one after another till the target data is found or the list is exhausted
- C. An ordered list is halved. The half that may contain the target data is halved again repeatedly till the target is found or the list is exhausted.