Mini Car Design Challenge

Using the Design Process, you and a partner will design, document, model, and produce a toy car with interchangeable parts. The design must consist of three parts: body (2), chassis, and wheels (4). Each partner will design their own body for the car but partners must work together to design a single chassis and set of wheels.

Time Frame: 4-6 weeks

Stage 1 - Desired Results

Big Idea(s)

- 1. Effective use of the engineering design process to solve problems.
- 2. Documentation of the process used to solve the problem.
- 3. Use of appropriate tools to take accurate and precise measurements.
- 4. Developing a design from conception to prototype.
- 5. Use of appropriate modeling software.
- 6. Using tolerance to create interchangeable parts.
- 7. Statistical and graphical analysis of data.

PA Core Standards / Next Generation Science Standards						
T & E Education	Science Education	Mathematics Education	Computer Science	CEW		
 3.1.10.D 3.2.10.D 3.6.10.B 3.7.10.D 	• HS-ETS1-2 • HS-ETS1-4	 CC.2.1.HS.F.3 CC.2.1.HS.F.5 CC.2.2.HS.D.10 CC.2.2.HS.C.6 CC.2.4.HS.B.2 CC.2.4.HS.B.3 		• 13.3.11.C • 13.3.11.E		

Essential Questions

- How can the engineering design process help you to create a better design?
- How can an engineer communicate an idea and the process of how they came up with that idea?
- What dimensions on a technical drawing require tolerance notation?
- What tools should be used to take accurate and precise measurements?
- How can accurate technical drawing aid in the creation of models and prototypes?
- How can statistical and graphical analysis be used to describe the relationship between two variables?

Students Will Know	Students Will Be Doing
 Content specific vocab Reverse engineering Tolerance Interoperability 	 Functional and interoperability analysis Documenting their use of the design process Using precision measurement tools (dial caliper)

- Functional analysis
- Annotation
- Steps of design process
- Process and purpose of reverse engineering
- Process to create technical drawings and models of a design
- Appropriate and safe use of tools and machines

- Creating annotated technical drawings and 3D models of designs for rapid prototyping
- Testing and recording data to evaluate prototype performance
- Performing statistical and graphical analysis of data
- Using tools and machines to assemble prototype

Stage 2 - Evidence of Understanding

Assessments (Formative and Summative):	Performance Task(s)	
 Informal Formative Assessments throughout activity Formal assessments: Project rubric 	 Documentation of engineering design process in engineer's notebook Functional and interoperability analysis of existing parts Creation of technical drawings Creation of 3D models Construction of prototype Testing and evaluation of prototype 	

Stage 3 - Lesson Learning Targets

Learning Activities:

Learning targets are written from the students perspective.

I can...

These should lead up to answering the Essential Question(s).

- Identify steps of the engineering design process and the tasks involved with each step.
- Describe the importance of the design process in creating an effective solution.
- Use appropriate tools/devices to take and record accurate and precise measurements.
- Describe an object through dimensional annotation.
- Create appropriate and accurate technical drawings.
- Describe the concept of tolerance as it relates to interoperability of parts.
- Interpret data through statistical and graphical analysis.
- Create a graphical model to describe the relationship between two variables.

RESOURCES / LINKS

Activities	Presentations	Assessments	
Mini Car Design Challenge	Mini Car Presentation	• Mini Car Design Challenge Rubric	