

POINT-TO-MULTIPOINT WIRELESS PLANNING SYSTEMS Advanced Technology in Radio Communications

Pablo Corral González Communications Engineering Department Signal Theory and Communications Universidad Miguel Hernández

Lesson 2: point-to-multipoint wireless planning systems								
2.1. P-T-MP PLANNING SYSTEM (32):								
THEORETICAL CELLULAR PLANNING (4) POWER BALANCE:LINK CALCULUS (2)								
Receiver sensitivi (QPSK, 16QAM,	Receiver sensitivity depends on the modulation (QPSK, 16QAM, 64QAM)							
• QPSK receiver	sensitivity (I 10 GHz	ETSI) 26 GHz						
7 MHz	-85 dBm	-88 dBm	$P_{tx}(26) = +19 \text{ dBm}$					
14 MHz	-82 dBm	-85 dBm	$P_{tx}^{(10)}$ =+20 dBm					
If we suppose this P_{tx} , $G_T = 15 \text{ dBi}$, $G_R = 35 \text{ dBi}$, we obtain								
• Maximum cell	size	10 GHz *						
14 MHz	3.6 km	7 . 7 km						
7 MHz	3.2 km	9 km	36					
Advanced Technology in Radiocomm	unications		UNIVERSITAS Miguel Hernández					

THEORETICAL CELLULAR F WER BALANCE:LINK CALCULUS (3) s are not deterministics, so the sizing of cells must be compecific availability of the link and we have to predict a gin. Fainting margin for a 5 km and 28 GHz link in different rain areas and gin. Note: State of the link and we have to predict a gin. State of the link and the link and we have to predict a gin. State of the link and the link and the link and the link areas and gin. State of the link and the link and the link areas and gin. State of the link and the link areas and the link areas a	2.1	. <i>P-T-MP</i> 1	PLANNI	NG SYSI	TEM (33)):	
Fainting margin for a 5 km and 28 GHz link in different rain areas and generations (dB) Karren V P area (%) V H V H (%) V H V H (%) V H V H (%) V H (%) V H (%) V H (%) V H 99 1.2 1.4 3.1 3.7 8.2 10.3 99 1.4 8.9 12 26.1 32.9	WER BALANC	E:LIN	K CA	theor LCUI	etical LUS (.	. CELLU. 3)	LAR P.
polarizations (dB) Availability C arc K arc P arc (%) V H V H V H (%) 1.2 1.4 3.1 3.7 8.2 10.3 99,9 4.1 4.8 9.9 12 26.1 32.9	ss are not determin specific availability rgin. Fainting n	istics, s y of the	so the so link a	nd we GHz link in	of cell have t	s must to pred	t be d lict a
Availability C area K area P area (%) V H V H V H 99 1.2 1.4 3.1 3.7 8.2 10.3 99,9 4.1 4.8 9.9 12 26.1 32.9			polariza	tions (dB)			
(%) V H V H V H 99 1.2 1.4 3.1 3.7 8.2 10.3 99,9 4.1 4.8 9.9 12 26.1 32.9	Availability	Ca	irea	Ка	irea	Ра	irea
99 1.2 1.4 3.1 3.7 8.2 10.3 99,9 4.1 4.8 9.9 12 26.1 32.9	(%)	v	Н	v	Н	v	Н
99,9 4.1 4.8 9.9 12 26.1 32.9	99	1.2	1.4	3.1	3.7	8.2	10.3
	99,9	4.1	4.8	9.9	12	26.1	32.9
99,99 11.5 12.9 25.3 30.8 68.1 85.5			12.9	25.3	30.8	68.1	85.5
99,999 22.6 25.5 53.9 65.8 145.9 183.9	99,99	11.5					

Lesson 2: point-to-multipoint wireless planning s	ystems
2.1. P-T-MP PLANNING SYSTEM (40):	
USER DENSITY THEORETICAL CELLULAR PLANNIN	VG (12)
If the user density is high, it is possible that you have to define again the cell size.	
 Restriction in avaliable bandwidth. Restriction in WLL equipment. 	
 To use a more efficient modulation To increase the number of used frequencies To increase the cell sizing 	
If it is not possible To reduce the cell size To increase the number of base stations	e 44
Advanced Technology in Radiocommunications	UNIVERSITAS Miguel Hernández

	Lesson 2: point-to-multipoint wireless planning systems								
	2.1. P-T-MP PLANNING SYSTEM (42):								
	USER DENSITY THEORETICAL CELLULAR PLANNING (14)								
	Examples: REUNION, NORTEL NETWORKS								
	LMDS system to 28 GHz, W=10 MHz, 99,99%								
		1 carrier 4QAM	1 carrier 16QAM	1 carrier 64QAM	2 carriers 64QAM	3 carriers 64QAM	4 carriers 64QAM		
	Coverage (km)	4.5	3,2	2,2	1,7	1,5	1,3		
	ATM capacity (Mbps)	13,7	27,4	41,1	82,3	123,4	164,5		
	Capacity/k m ²	0,9	3,4	10,8	36,7	68,9	123,9	46	
Advar	Advanced Technology in Radiocommunications								

	Lesson 2: point-to-multipoint wireless planning systems 2.3. MANUFACTURERS AND DISTRIBUTORS (5):								
BreezeAcce	ALVARION (2) BreezeAccess VL								
Sensitivity (dBm)	-89	-88	-86	-84	-81	-77	-73	-71	
Modulation level	1	2	3	4	5	6	7	8	
- Modulatio OFDM (BF - Network 1 SNMP ages	 Modulation: OFDM (BPSK, QPSK, 16QAM, 64 QAM) Network management: 								
- Gains of t 16 dBi (90°	- Gains of the antennas: 16 dBi (90°), 15 dBi (120°), 8 dBi (360°) 75								
Advanced Technology in R	adiocommu	nications						UNIVERSITAS Miguel Hernández	

Lesson 2: point-to-multipoint wireless planning systems									
2.3. MANUFACTURERS AND DISTRIBUTORS (7):									
■ It assures BER< 10 ⁻⁹									
 Channel equalization and Trellis codification 99.999% availability 									
 Optionally, it allows equipment redundancy. adaptive frequency to reduce CIR. 									
	By carrier	By sector	By cell (BS)						
Capacity without frequency re-using	2xE1	16, 32, 32xE1	96,192, 384xE1						
N° of terminal stations(Max.)	16, 16, 16	128, 256, 256	768, 1536, 3072						
N° carriers (Max)*	N° carriers (Max)* 8, 16, 16 48, 96, 19								
N° Sectors			4/6, 4/6, 4,/8/12						
Bandwidth (Max.)*	1.75 MHz	2x14, 2x28,2x28 MHz	2x84,2x168,2x336 MHz						
Frequency re-using factor			Up to 2, 2, 3 **						
** Capacity can be increased by 50% using several polarizations									
Advanced Technology in Radiocommunications									

