Ged geometry - from start to finish

I. Identification and properties of common shapes - planar (shapes found on the formula sheet for GED)
A. Circle (radius, diameter, pi)
B. Square (all sides equal and perpendicular to each other)
C. Rectangle (opposite sides equal in length and sides perpendicular)
D. Parallelogram (opposite sides parallel but not perpendicular, height is perpendicular)
E. Triangle (right, isosceles, equilateral and scalene, height perpendicular to base)
F. Trapezoid (parallel sides are bases, height must be perpendicular to base)

Emphasis suggestions:

1. Understanding the relationship between pi, radius and diameter
2. The height of an object is not necessarily the side length of the side. For example, the height of a parallelogram or trapezoid
3. Perpendicular means at an angle of 90 degrees to each other
II. Perimeter of common shapes
A. Perimeter always involves addition (exception of circle)
1.No formula needed! Add up ALL of the sides
a. how do you add up sides of a circle?
4. Fancy word for perimeter of a circle is circumference
B. Key words
5. Distance around, revolution (circle), laps, enclose, surround, outline, encircle, border, frame
C. Finding perimeter with lengths given in different units
6. All units of measure must be the same
a. Convert to same units before you add (1' $+1^{\prime \prime}$ in does not equal 2^{\prime})
D. Perimeter word problems
7. Simple perimeter problems
8. Finding length of a side given the perimeter
9. Perimeter problems where the word perimeter is not used
E. Perimeter of compound shapes

Emphasis suggestions:

1. Perimeter in life - where do we see it? We see it in interior design and sports such as cross country running
2. No need for a formula! Perimeter always involves addition (except circle)
3. Perimeter is always a unit of length
III. Pythagorean Theorem
A. How do solve for a, b, or $\mathrm{c} . \mathrm{C}$ is always the longest side. Shorter side corresponds to lower angle. Knowing the difference between legs and hypotenuse

Emphasis suggestions:

1. Do not get bogged down in the formula - two sides of a triangle never add up to the third side. Have students try it with two 2 inch long items and a 4 inch long item - can they make a triangle without overlapping?
2. Pythagorean in life - ladder leaning against a building, handicap ramp, construction
3. Pythagorean triples are 3-4-5, 5-12-13, and 7-24-25.
IV. Area of common shapes
A. Area always involves multiplication
4. Introduce area formulas for shapes
5. Define what height is (always perpendicular to base)
B. Key words
1.Cover, square units, paint, carpet, tile, glass
C. Finding area with different units (introduces conversions)
6. Cannot multiply feet by yards etc, convert before you do calculation
D. Area word problems
7. Simple area problems (finding area given dimensions)
8. Finding missing dimension given area
9. Area word problems where the word area is not used
E. Area of compound shapes (adding areas)
10. Finding area of two of the same shape
11. Finding area of an L shaped object where you have to draw in rectangles
12. Finding area of two different shapes (basketball court)
F. Area of compound shapes (subtracting areas)
13. Finding area of shaded region
a. Rectangle or square within a rectangle (picture frame for example)
b. Circle within a circle (mirror with wood frame/ tablecloth hanging down)

Emphasis Suggestions:

1. Area is always in square units and the units must match (inches and inches)
2. Real life area problems such as cost of carpeting or painting a room
3. Bring out formula sheet for ged and start going over it
V. Identification and properties of 3-dimensional shapes/solids
A. Rectangular prism (fancy word for a box) and cube
B. Right prism
4. A right prism is any polygon bases with sides perpendicular to that base
a. Triangular tube, (have a handout with pictures perhaps)
C. Cylinder
1.height and radius, examples of cylinders - soup can, pipe, tube
D. Cone
5. Height and radius, examples of cones - ice cream cone, party hat
E. Square pyramid
6. The base is a square so the sides of the base are equal
F. Sphere
7. Only measurement needed is radius or diameter -ball, orb

Emphasis Suggestions:

1. Able to identify the above given shapes in the world around you
VI. Surface area of 3-dimensional shapes/solids
A. What is surface area? (square units)
2. Surface area is the sum of the area of all the sides of a solid
B. Key words (material, wrapping paper, cardboard for a box)
C. Formulas and where they come from
D. Finding the surface area
E. Surface area in word problems
F. Finding missing dimensions given surface area

Emphasis Suggestions:

1. Surface area is like the area of a 3 dimensional object
2. Difference between area and surface area
3. surface area being in square units
4. Show where formula for surface area of rectangular prism and cube comes from perhaps derive it
5. Don't forget ged formula sheet
VII. Volume of solids
A. What is volume (cubic units)
B. Key words (fill, capacity, space, hold)
C. Formulas and where they come from
6. Volume is the area of the base (B) times the height
a. Definition of capital B and little b
D. Calculating volumes of different solids and compound solids
E. Volume word problems
F. Finding missing dimensions given the volume

Emphasis Suggestions:

1. Volume always in cubic units and units must match
2. Volume in real life (pool, air in a balloon, concrete)
3. Show how $\mathrm{V}=\mathrm{Bh}$ is evident in the volume of a cylinder formula and rectangular prism formula (from the GED formula sheet)
