

In this section, we introduce to polar coordinates, which are points labeled (,) and plotted on a polar grid. The polar grid is represented as a series of concentric circles radiating out from the pole, or the origin of the coordinate plane.

The polar grid is scaled as the unit circle with the positive _____-axis now viewed as the ______ axis and the origin as the pole. The first coordinate r is the ______ or length of the directed line segment from the pole. The angle ϑ , measured in radians, indicates the ______ of r. We move counterclockwise from the polar axis by an angle of ϑ , and measure a directed line segment the length of r in the direction of ϑ . Even though we measure ϑ first and then r, the polar point is written with the r-coordinate first.

Examples

Plot the point $\left(2, \frac{\pi}{3}\right)$ in the **polar grid**.

Plot the point $\left(-2, \frac{\pi}{6}\right)$ on the polar grid.

Plot the points $\left(3, -\frac{\pi}{6}\right)$ and $\left(2, \frac{9\pi}{4}\right)$ on the same polar grid.

Converting from Polar Coordinates to Rectangular Coordinate

$$\cos \theta = \frac{x}{r} \to x = r \cos \theta$$
$$\sin \theta = \frac{y}{r} \to y = r \sin \theta$$

A GENERAL NOTE: CONVERTING FROM POLAR COORDINATES TO RECTANGULAR COORDINATES

To convert polar coordinates (r, θ) to rectangular coordinates (x, y), let

$$\cos \theta = \frac{x}{r} \to x = r \cos \theta$$

$$\sin \theta = \frac{y}{r} \to y = r \sin \theta$$

HOW TO

Given polar coordinates, convert to rectangular coordinates.

- 1. Given the polar coordinate (r, θ) , write $x = r \cos \theta$ and $y = r \sin \theta$.
- 2. Evaluate $\cos \theta$ and $\sin \theta$.
- 3. Multiply $\cos \theta$ by r to find the x-coordinate of the rectangular form.
- 4. Multiply $\sin \theta$ by r to find the y-coordinate of the rectangular form.

Examples

Write the polar coordinates $(3, \frac{\pi}{2})$ as rectangular coordinates.

Write the polar coordinates (-2,0) as rectangular coordinates.

Write the polar coordinates $\left(-1,\frac{2\pi}{3}\right)$ as rectangular coordinates.

Converting from Rectangular Coordinates to Polar Coordinates

A GENERAL NOTE: CONVERTING FROM RECTANGULAR COORDINATES TO POLAR COORDINATES

Converting from rectangular coordinates to polar coordinates requires the use of one or more of the relationships illustrated in <u>Figure</u>.

$$\cos \theta = \frac{x}{r}$$
 or $x = r \cos \theta$
 $\sin \theta = \frac{y}{r}$ or $y = r \sin \theta$
 $r^2 = x^2 + y^2$
 $\tan \theta = \frac{y}{r}$

Lecture notes developed under creative commons license using OpenStax Algebra and Trigonometry, Algebra and Trigonometry. OpenStax CNX. May 18, 2016 http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@5.241

Example

Convert the rectangular coordinates (3, 3) to polar coordinates.

Figure 7.

Analysis

There are other sets of polar coordinates that will be the same as our first solution. For example, the points $\left(-3\sqrt{2},\,\frac{5\pi}{4}\right)$ and $\left(3\sqrt{2},-\frac{7\pi}{4}\right)$ will coincide with the original solution of $\left(3\sqrt{2},\,\frac{\pi}{4}\right)$. The point $\left(-3\sqrt{2},\,\frac{5\pi}{4}\right)$ indicates a move further counterclockwise by π , which is directly opposite $\frac{\pi}{4}$. The radius is expressed as $-3\sqrt{2}$. However, the angle $\frac{5\pi}{4}$ is located in the third quadrant and, as r is negative, we extend the directed line segment in the opposite direction, into the first quadrant. This is the same point as $\left(3\sqrt{2},\,\frac{\pi}{4}\right)$. The point $\left(3\sqrt{2},\,-\frac{7\pi}{4}\right)$ is a move further clockwise by $-\frac{7\pi}{4}$, from $\frac{\pi}{4}$. The radius, $3\sqrt{2}$, is the same.

Lecture notes developed under creative commons license using OpenStax Algebra and Trigonometry, Algebra and Trigonometry. OpenStax CNX. May 18, 2016 http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@5.241

Transforming Equations between Polar and Rectangular Forms Examples Write the Cartesian equation $x^2 + y^2 = 9$ in polar form.

Rewrite the **Cartesian equation** $x^2 + y^2 = 6y$ as a polar equation.

Rewrite the Cartesian equation y = 3x + 2 as a polar equation.

Identify and Graph Polar Equations by Converting to Rectangular Equations

Examples

Covert the polar equation $r=2\sec\theta$ to a rectangular equation, and draw its corresponding graph.

Rewrite the polar equation $r=\frac{3}{1-2\cos\,\theta}$ as a Cartesian equation.

