

Deadlock

 Basic Terminology & Definitions

 Deadlock, livelock, starvation, resource allocation graph

 Conditions To Deadlock, Approaches To Deadlock

 Mutual exclusion, hold and wait, no preemption, circular wait, deadlock

 prevention, avoidance, detection and recovery, Ostrich Algorithm

 Deadlock Prevention

 Solutions and demerits of the solutions for the conditions Mutual exclusion, hold

and wait, no preemption, circular wait

 Deadlock Avoidance

 Process initiation denial, resource allocation denial, banker’s algorithm,

 safe-unsafe state

 Deadlock Detection And Recovery

Detection algorithm, resource category, solutions to every category, integrated

deadlock strategy

 Dining philosophers problem

 Solved problems

Problems on process initiation denial, resource allocation denial, detection

algorithm, determine if the states are safe or unsafe.

 Multiple Choice Questions

Basic concepts and Terminologies

Q. Define Deadlock, resource, system state, safe state, unsafe state,
consumable nonconsumable resources, livelock,
Ans.
Deadlock: Deadlock is defined as a situation wherein a set of two or more
processes are waiting for the resources which are currently held by other
members, which in turn are waiting for the resources in possession of the
some other processes in the same set, thus none of them can proceed
further.

In other words, the deadlock occurs if two processes need the same
two resources to continue and each has ownership of one. Unless some
action is taken, each process will wait indefinitely for the missing resource.
The deadlock leads to permanent blockage of all the deadlocked processes.

Ans. Resource: A resource, or system resource, is any physical or virtual
component of limited availability within a computer system. Every device
connected to a computer system is a resource.

 The basic resources of computing machine are: CPU, memory, files
and I/O devices. Every internal system component is a resource. Virtual
system resources include files, network connections and memory areas.

Ans. System State: The state of the system at any point of time is defined as
the allocation of resources to processes at that particular instance.

Ans. Safe State: the system state in that does not lead to deadlock is termed
as safe state/

Ans. Unsafe state: The system state that leads to deadlock is called unsafe
state.

Ans. Reusable and consumable resources:

non-consumable resources: resources that are made available again after
use.

Examples of reusable resources are:

 processors,

 I/O channels,

 Main and secondary memory, disk space

 Devices, and

 Data structures such as files, databases, and semaphores.

 Glasses, space in street!

Consumable resources: one task creates the resource, another can use it
once only.
 Examples of consumable resources are:

 Interrupts,

 Signals,

 Messages, and

 Information in I/O buffers.

 Spoken words

The resources in any computing system are broadly classified into two
categories as, reusable and consumable resources. The consumable
resources are created and destroyed. Also there is no limit on consumable
resources of a particular type.

Ans. live lock : Live lock can be defined as a condition in which one or more
processes continuously change their state in response to changes in the other
process(es) without doing any useful work. This is similar to deadlock in that
no progress is made but differs in that neither process is blocked nor waiting
for anything.
 The system can come out of livelock if their relative pace of execution
is changed while in execution.

Q. List three examples of deadlocks that are not related to a computer
system environment.
Ans. Deadlock is not only associated with computer systems, but they are
possible with general life scenarios, too. Some such examples are listed
below.

 A scenario when two cars are crossing a single-lane bridge from
opposite directions.

 A scenario where a person is going down a ladder while another
person is climbing up the ladder at the same time.

 A scenario when two

trains are traveling toward each other on the same track.

2. Process resource representation methodologies

Q. Comment on the resource state modeling methods.
Ans. Operating systems needs to analyze the process-resource states to
determine if it is in deadlocked state or not. Two kinds of models are used to
represent the resource allocation state of system as : Graph model and
Matrix model.
Graph model:

 This model can depict the allocation state of a restricted class of

system in which any process can request and use exactly one resource

unit of each resource class.

 Uses a simple graph algorithm to determine if the circular wait

condition is attained by the processes.

Figure: Resource allocation graph for two process and two resources.

Matrix model:

 This model has the advantage of generality.

 It can model allocation state in a system that permits a process to

request and acquire any number of units of resource class and

instances.

R1 R2 … … Rm

P1 A11 A12 … … A1m

P2
A21 A22 … … A2m

… … … … … …

… … … … … …

Pn An1 An2 … … Anm

Allocation Matrix of n resources for m types of resource classes

Q. Explain the concept of resource allocation graphs in detail.

Ans. Resource allocation graphs

The resource allocation to processes is the root cause for the deadlocks to
occur. So, the deadlock management requires some tools to depict the
resource allocation scenario at any instance. Resource allocation graphs
characterize the exactly the same thing.
 The resource allocation graph is basically a digraph in which each
process and resource is represented by a node. Within a resource node, a
dot is shown for each instance of that resource. All the directed edges from
process to resource indicate the resources that have been requested but not
yet granted. A graph edge directed from a reusable resource node dot to a
process indicates a request that has been granted; that is, the process has
been assigned one unit of that resource. A graph edge directed from a
consumable resource node dot to a process indicates that the process is the
producer of that resource.

Resource Graph Model:
The resource allocation graphs(RAG) contain two kinds of nodes: circles and
squares. Circles represent processes and squares are used to model
resources.

 Process Resources

The RAGs represent two kinds of actions:
a. Process needs a resource

b. Resource is allocated to a process

a. A requested resource b. An allocated resource

c. Circular wait d. No deadlock

Why the system resources and their allotment to processes are mostly
represented with matrix rather than with resource allocation graphs?
Ans. The system has multiple resources. Also there is no control over number
of processes those can exist in system. These processes request multiple
copies of each resource which becomes difficult to model with resource
allocation graph. So, the matrix representation wins over the same.

R1 R2 … … Rm

P1
C11 C12 … … C1m

P2 C21 C22 … … C2m

… … … … … …

… … … … … …

Pn Cn1 Cn2 … … Cnm

Figure: Resource Claimed Matrix for n Processes and m Types Of Resources

R1 R2 … … Rm

P1 A11 A12 … … A1m

P2 A21 A22 … … A2m

… … … … … …

… … … … … …

Pn An1 An2 … … Anm

Figure: Resource Allocation Matrix for n Processes and m Types Of
Resources

3. Conditions to Deadlock, Approaches to Deadlock

Q. State the conditions for deadlock.

A deadlock has four potential reasons to occur. Out of them, the first three do
not guarantee a deadlock, but when any one of them is combined with the
fourth one, the deadlock occurs for sure. These four conditions can be listed
as: Mutual Exclusion, Hold and wait, No preemption and Circular wait.

 Mutual exclusion:

 Hold and wait

 No preemption

 Circular wait

Q. What are the strategies to handle deadlock?
Ans. The different strategies to handle deadlock are: deadlock prevention,
deadlock avoidance and deadlock detection and recovery.
Deadlock prevention: This is name of the design policy of operating system
to get rid of deadlocks. It suggests how resource requests are made and how
they are serviced.
 Deadlock prevention is constraing how resource request can be
submitted and how they can be handled by system. The foremost goal is to
ensure that deadlock occurring conditions do not hold.
Deadlock Avoidance: This concept allows checks the possibility of deadlock
on dynamic basis and then decides if resource granting will be safe or not.
 The deadlock avoidance considers every resource request in run time
and decides if it should grant the resources. This concept also requires all the
processes to submit their total resource requirements in advance. Deadlock
avoidance method allows more concurrency.
Deadlock detection and recovery: The detection technique checks if the
system is in deadlock. If the answer is a “yes”, then gives solution to recover
from the same. This concept has nothing to do with resource granting. The
recovery method depends on process and resource characteristics those
have contributed to deadlock.

4. Deadlock prevention policy

Q. What is deadlock prevention policy of OS?
Ans. The deadlock prevention policy is to design system in such a way that
excludes all the possibilities of deadlock occurrences. These prevention
methods can be categorized into two categories: indirect method and direct
method.
The indirect method tries to prevent the occurrence of one of the conditions
i.e. mutual exclusion, hold and wait and no preemption. The direct method
directly works on the circular wait to get prevented.

Mutual Exclusion prevention policy: Actually, this particular condition
cannot be disallowed. If any resource requires mutual access then mutual
exclusion must be supported by OS.

Hold and Wait prevention policy: The hold and wait condition can be
prevented by requiring that a process should request all its required
resources at once and blocking the process until all resources can be granted
simultaneously. This approach takes much time for a process to get started
and thus results in more response time, waiting time and obviously turnaround
time. Also, this approach keeps most of the resources with the process for its
lifetime and they may get underutilized.

No preemption prevention policy: This situation can be handled in many
ways. One approach is, when a process holding certain resources and is
denied further ones, then the process must release its original resources. This
process when scheduled next time, can request for these resources afresh.
Another approach is, when a process holding certain resources and requests
for some more ones which are in possession with other process, the OS must
preempt second process and make it to release all its possessions.

This method is useful only when it is applied to resources whose state
can be easily saved and restored later on.

Circular wait prevention policy: In this case, all the resources in system
are listed and are given some liner order numbers. If a process is allocated
resources of type R, then it may subsequently request only those resources of
types following R in the ordering.
i.e. Then resource Ri precedes Rj in the ordering if i < j. Now suppose that
two processes, A and B, are deadlocked because A has acquired Ri and
requested Rj, and B has acquired Rj and requested Ri. This condition would
be impossible here because it implies i < j and j < i.

This approach to deal with circular-wait prevention may be inefficient,
slowing down processes and denying resource access unnecessarily.

These prevention policies leads to inefficient use of resources and
overall inefficient execution of processes.

5. Deadlock avoidance policy

Q. What is deadlock avoidance policy?
Ans: Deadlock avoidance allows the first three conditions but ensures that
deadlock point is never checked. With avoidance, a decision is dynamically
made whether the next resource allocation, if granted, can lead to deadlock.
This decision is based on two policies as, Process Initiation Denial and
Resource Allocation Denial.

A. Process Initiation Denial: Do not start a process if its demands

might lead to deadlock.

 This approach enlists all system resources in resource vector R.

 The processes involved state all their resource requirements

beforehand.

 With every resource allocation resource available vector A is

computed, which initially equals the resource vector R.

 The process requirements if are less than or equal to as mentioned in

available vector A, then the request is granted and process is initiated.

 If the process requirements are greater than those mentioned in

available vector A, then the process is denied its initiation.

 This strategy is hardly optimal, because it assumes the worst: all
processes will make their maximum claims together.

B. Resource allocation denial: Do not grant an incremental resource

request to a process if it might lead to deadlock.

This approach, also called as Banker‟s algorithm, always try to keep the
system is safe state. The state concept is defined with reference to a system
of fixed number of resources and a fixed number of processes as follows,
State: the State of the system depicts the current allocation of resources to
the processes.
Safe state: Safe state is characterized as there exist at least one sequence of
resource allocation that does not result in deadlock.
Unsafe state: the state which is not safe, i.e. which does not assure even one
sequence that doesn‟t end up in deadlock.

Here, there is no restriction on process initiation. Instead, processes
are allowed to get created. All the processes give their overall resource
requirements and their requirements in initial state. At every resource
allocation request, the OS evaluates a hypothetical situation „what if the
required resources are granted, the process in question completes and
returns back the possessions, will there be at least one sequence in which all
the processes in set can get executed?” i.e. if the resource granting will result
in a safe state? If yes, the allocation is completed otherwise it gets denied.

Q. Explain the process denial policy of deadlock avoidance in detail.

Process Initiation Denial is one the deadlock prevention policies. It is
based on the assumption that any process requesting its initiation should
claim all of its resources at the same time.
To implement this policy, the system maintains two vectors and two matrices
as,

Vector R = all resources indicating various resource types and their instances.

 R= (R1,R2, . . . , Rm)
Vector V = the types and instances of available resources at any instance of
time.

V= (V1,V2, . . . ,Vm)
Matrix C = resources claimed by processes.(Cij = requirement of process i for
resource j, with one row dedicated to each process)

R1 R2 … … Rm

P1 C11 C12 … … C1m

P2 C21 C22 … … C2m

… … … … … …

… … … … … …

Pn Cn1 Cn2 … … Cnm

Claimed Matrix C
Matrix A= a matrix of resources allocated to processes. (Aij= current allocation
to process i of resource j)

R1 R2 … … Rm

P1 A11 A12 … … A1m

P2 A21 A22 … … A2m

… … … … … …

… … … … … …

Pn An1 An2 … … Anm

Allocation Matrix A
All these above data structures are bound in following relationships,

1 . All resources are either allocated or available.
Rj = Vj + ∑i=1 to n Aij for all j

2 . No process can claim more than the total amount of resources in the
system .

Cij < = R j for all i, j
3. No process is allocated more resources of any type than the process

originally claimed to need.
Aij < = C i j for all I,j

When allowing any (n+1)th process to initiate while already n (n>=0)
processes exist in system , the following condition is checked.

Rij>= C(n+1)j+ ∑ i=1 to n Cij for all j

That means, a process is initiated only if the maximum claims so far
plus the new request can be met. This approach is hardly optimal as its based
on the worst possible assumption: all processes will make their maximum
claims together.

Q. Give an example of process initiation denial approach of deadlock
management.
Ans.
Consider a system with given resource vector R=

Assume process P1,P2,P3,P4 join the system with some claims for resources
in the same order as they are written.

C=

Initially the available vector is same as the resource vector.

 So V=

Every process received is checked against the available vector one by one in
their order of arrival.
.

Process Request Available
resources

Vk=Vk-Cik

Is Request <
Available?

Process
initiated?

P1 {4,3,3} {7,5,9} Yes Yes

P2 {7,2,4} {3,2,6} No No

P3 {2,2,5} {3,2,6} Yes Yes

P4 {0,0,1} {1,0,1} Yes Yes

Thus in the above example only P1,P3, and P4 are allowed to initiate while P2
is denied its initiation.

Q. Explain in detail the resource allocation denial policy of deadlock
avoidance.

The deadlock possibility can be avoided by not awarding the resources
whenever they may have potential of leading to deadlock. This strategy is
most popularly known as Banker’s algorithm. For a system of fixed number
of resources and a fixed number of processes, the OS defines state as the
current resource allocation to processes. This way, a safe state is considered
the one in which there exists at least one sequence of process execution.
Thus, any allocation leading to unsafe state is avoided.

Data structures used in computation:
Vector R = all resources indicating various resource types and their
instances.

6 5 9

4 3 3

7 2 4

2 2 5

0 0 1

7 5 9

 R= (R1,R2, . . . , Rm)
Vector V = the types and instances of available resources at any instance of
time.

V= (V1,V2, . . . ,Vm)
Matrix C = resources claimed by processes.(Cij = requirement of process i for
resource j, with one row dedicated to each process)

 C=

Matrix A= a matrix of resources allocated to processes. (Aij= current allocation
to process i of resource j)

 A=

Matrix M = a matrix of more resources required which is computed as,

M = C-A

Given all the above values the stafe status can be calculated as,

1. For any process i=1 to n, compare its associated row of matrix M with
vector V.

2. If that Mij is less than or equal to Aj for all j, this process i can be
assumed to be completed and thereby its resources can be given back
to system.
Thus, after hypothetical successful completion of process i the
available vector A is updated as,

V= V+ Aij where Aij indicates the resources j allocated earlier to
process i.

Also update Aij=0 for all js as the process holds no more resources.
3. Repeat step 1 and 2 until all processes are considered.

If all the processes in the set have the allocation matrix entries as 0s, the
system is in safe sate, and sequence in which the process were selected can
be termed as one of the possible execution sequence without any deadlock.

This approach seems simple and good, but it has certain preconditions X as,

1. All the resource requirements must be stated in advance.
2. The order in which processes get executed should not be constrained

by synchronization or any that kind of mechanism.
3. The system must have fixed number of resources to allocate
4. The processes participating here are not allowed to exit holding the

resources

C11 C12 … … C1m

C21 C22 … … C2m

… … … … …

… … … … …

Cn1 Cn2 … … Cnm

A11 A12 … … A1m

A21 A22 … … A2m

… … … … …

… … … … …

An1 An2 … … Anm

Banker‟s Algorithm makes sure that only processes that will run to completion
are scheduled to run. However, if there are deadlocked processes, the will
remain deadlocked. Banker’s Algorithm does not eliminate a deadlock.

Q. Explain the resource allocation denial concept with an example.
Ans. Resource allocation denial or Banker’s algorithm
Example: consider a set of four processes p1,p2,p3,p4 and three resource
types as R1,R2 and R3 with their values as,

Resource vector R(R1,R2,R3)=

Note: In the following matrices rows indicate process and columns represent
the resources.

Claimed matrix C =

Allocation Matrix A =

More requirement M =

Available vector V (R1,R2,R3)=

Solution: From the given processes P1,P2,P3 and p4, only p2 is the process
whose corresponding row in matrix M satisfies the criteria of being less than
values in vector V.
So, first P2 may run to completion. Then the above tables will have values
as,

1. After P2 runs to completion

 Claimed Matrix C Allocation Matrix
A

13 5 9

4 3 3

7 2 4

4 2 5

5 3 3

2 0 0

7 2 3

3 2 2

1 1 3

2 2 2

0 0 1

1 0 3

4 2 0

0 0 1

4 3 3

0 0 0

4 2 5

5 3 3

2 0 0

0 0 0

3 2 2

1 1 3

2 2 2

 Available vector V

 More Requirements M

Now, seeing the entries in M and available vector V, any process can
be awarded with the resources and they can run to completion.

1. After P1 runs to completion

 Claimed Matrix C Allocation Matrix
A

Available vector V=

More Requirements M=

2. After P3 runs to completion

 Claimed Matrix C Allocation Matrix
A

Available vector V

More Requirements M

3. After P4 runs to completion

0 0 0

1 0 3

4 2 0

7 2 4

0 0 0

0 0 0

4 2 5

5 3 3

0 0 0

0 0 0

3 2 2

1 1 3

9 2 4 0 0 0

0 0 0

1 0 3

4 2 0

0 0 0

0 0 0

0 0 0

5 3 3

0 0 0

0 0 0

0 0 0

1 1 3

0 0 0

0 0 0

0 0 0

4 2 0

12 4 6

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 Claimed Matrix C Allocation Matrix
A

Available vector V

More Requirements M

As the resultant computation is giving the process execution sequence as P2-
P1-P3-P4, the system is in Safe state.

Q. Give one example of potential unsafe state that can be avoided with
deadlock avoidance (Banker’s algorithm).
Ans.

consider a set of four processes p1,p2,p3,p4 and three resource types as
R1,R2 and R3 with their values as,

Resource vector R(R1,R2,R3)=

Note: In the following matrices rows indicate process and columns represent
the resources.

If process P2 from earlier example requests one more resource of type
R3, and if it gets granted by system, then it enters in unsafe state.

Claimed matrix C =

Allocation Matrix A =

More requirement M =

Available vector V (R1,R2, R3)=

0 0 0

0 0 0

0 0 0

0 0 0

13 5 9

13 5 9

4 3 3

7 2 5

4 2 5

5 3 3

2 0 0

7 2 3

3 2 2

1 1 3

2 2 2

0 0 2

1 0 3

4 2 0

0 0 1

In the above scenario, none of the row the More Requirement Matrix M has
requirement that can be satisfied by available vector V. so, this is an unsafe
state. To overcome this, the requests given in claimed matrix should be
served in such a way that there exists one possible sequence of execution.

6. Deadlock Detection And Recovery

Q. How does deadlock detection and recovery work?
This is the most liberal policy amongst all. This approach does not limit

resource access or restricts process actions. Instead, the requested
resources are granted whenever possible and OS performs periodic or
aperiodic checks to detect if deadlock has occurred and it is recovered
accordingly.
The frequency of deadlock detection is one of the mentioned below:

 On some regular interval

 On each resource request

The first policy reduces OS overhead but may lead the system into a serious
deadlock state while the later one results in early detection.
One the deadlock is detected, every kind of resource that has caused the
deadlock, has a different deadlock recovery strategy.

Q. Explain in detail the deadlock detection algorithm.
Ans.
 This particular approach has the least restrictions on the processes and
resources. It lets the processes claim and get resources, all resources need
not be claimed in beginning and system runs checks if system is in deadlock
state and recovers from the same accordingly.

The detection and recovery algorithm:
Inputs:

1. Resource Vector R
2. Available vector V (optional)
3. Claimed matrix C
4. Allocation matrix A

Steps:
1. Compute the available vector V if not given.
2. Compute the more requirement matrix M= C-A
3. Mark each process that has a row in the Allocation matrix of all

zeros.
4 . Find an index I such that process i is not marked and its

corresponding ith row of M is less than or equal to Available vector
V.i.e., Mik <= Vk for all 1<=k<=m where m is total number of
resources. If no such row is found, terminate the algorithm.

5 . If such a row is found, mark process I and add the corresponding
row of the allocation matrix to available vector V. i.e. Vk=Vk+Aik for
all 1<=k<=m. return to step 4.

 A deadlock is detected if there are any unmarked processes at the end of
the algorithm. It says that every unmarked process is deadlocked. this
algorithm does not guarantee to prevent deadlock; that will depend on the
order in which future requests are granted. All that it does is it determines if
deadlock currently exists accordingly calls the recovery procedure.

Q. What are the general recovery policies of system?
Ans: one of the following options can be taken whenever system detects that
it is in a deadlock state.

1. Abort all deadlocked processes (one of the most common
solution adopted in OS!!)

2. Rollback each deadlocked process to some previously defined
checkpoint and restart them (original deadlock may reoccur)

3. Successively abort deadlock processes until deadlock no longer
exists (each time we need to invoke the deadlock detection
algorithm)\

4. Successively preempt some resources from processes and give
them to other processes until deadlock no longer exists (a
process that has a resource preempted must be rolled back
prior to its acquisition)

For the options offered in 3 &4, the criteria to choose a process is one or more
of the following ones.

 least amount of CPU time consumed so far

 least total resources allocated so far

 least amount of “work” produced so far...

The following table gives example of three types of the resources device, file
and memory being requested, acquired by a process and released by the
same.

Request a
resource Acquire/use a resource

Release a
resource

Request a device
Read from/write to a
device Release a device

Open a file Read/write a file Close a file

allocate memory Use the memory Free memory

Q. what is integrated deadlock strategy?

There are several ways to address the problem of deadlock in an operating
system.

 Just ignore it and hope it doesn't happen
 Detection and recovery - if it happens, take action
 Dynamic avoidance by careful resource allocation. Check to see if a

resource can be granted, and if granting it will cause deadlock, don't
grant it.

 Prevention - change the rules

Actually, every deadlock handling strategy has some merits and demerits
associated with them. So instead of employing any one the strategies, it‟s

better to follow different strategy in different situations and with different
kinds of resources.
The general integrated deadlock strategy is:

1. Group the resources into number of different resource categories.
2. Use the linear ordering strategy defined for deadlock prevention of

circular wait to prevent deadlocks between resource classes.
3. Within a resource class, use the algorithm that is most appropriate

for that class.

Some example strategies within a resource class are as listed below,

1. Resource type: Swappable space
Recovery strategy: Deadlock prevention as the one used with hold-
and-wait prevention solution and deadlock avoidance

2. Resource type: Process resources
Recovery strategy: deadlock avoidance with resource allocation
denial solution type and Deadlock prevention by means of resource
ordering within the resource class.

3. Resource type: Main memory
Recovery strategy: Deadlock prevention solution used for no-
preemption situation.

4. Resource type: Internal resources
Recovery strategy: Deadlock prevention by means of resource
ordering can be used.

7. Deadlocks in UNIX

Q. Comment on deadlocks in Unix.
Like any other OS, Unix also employs multiple policies to handle the deadlock
issue. They can be enumerated as,

 Ostrich approach-It simply ignores the possibility of deadlocks involving
user processes.

 Deadlock prevention through resource ordering strategy is used for the
processes that are executing the kernel code as a result of interrupt or
system calls. Data structures in kernel are locked and released in a
standard order. However, not all kernel functionalities can lock the data
structures so deadlocks are possible.

 One approach to deal with issue above is, the process issuing request
avoids getting blocked on its lock. Instead it tries to get the next
resource of the same type if possible. This strategy avoids deadlocks
by avoiding circular waits, especially with buffer memory allocations.

 For the processes working with file systems, in case they need access
to two different directories, both directory locks are not set at the same
time. It first locks the first directory, updates it in desired manner and
releases the lock and then accesses another directory and updates it
as well. Thus it gets only one lock at a time thus avoiding hold and wait
condition.

Dining philosophers problem

Q. Dining philosopher’s problem
Ans. The dining philosophers problem is a ``classical'' synchronization
problem. Taken at face value, it is a pretty meaningless problem, but it is
typical of many synchronization problems that one can see when allocating
resources in operating systems.
Problem definition: There are 5 philosophers sitting at a round table. Between
each adjacent pair of philosophers is a fork. So they have only five fork. Each
philosopher does two things: think and eat. The philosopher thinks for a while,
and then stops thinking and becomes hungry. When the philosopher becomes
hungry, she cannot eat until she owns the both the forks on left and right.
When the philosopher is done eating she puts down the forks and begins
thinking again.

 The challenge in the dining philosophers problem is to design a
protocol so that the philosophers do not deadlock (i.e. every philosopher has
a fork), and so that no philosopher starves (i.e. when a philosopher is hungry,
she eventually gets the chopsticks). Additionally, our protocol should try to be
as efficient as possible -- in other words, one should try to minimize the time
that philosophers spent waiting to eat.

 Solution 1: Resource ordering

This approach establishes the convention that all resources will be
requested in order, and released in reverse order, and that no two
resources unrelated by order will ever be used by a single unit of work
at the same time. Here, the resources are the forks. They are
numbered one through five. All the philosopher‟s have to pick up the
lower numbered fork first and then the higher numbered one. Then,
she will always put down the higher numbered fork first, followed by the
lower numbered fork. In this case, if four of the five philosophers
simultaneously pick up their lower-numbered fork, only the highest
numbered fork will remain on the table, so the fifth philosopher will not
be able to pick up any fork. Moreover, only one philosopher will have
access to that highest-numbered fork, so he will be able to eat using
two forks. When he finishes using the forks, he will put down the
highest-numbered fork first, followed by the lower-numbered fork,
freeing another philosopher to grab the latter and begin eating.

This solution to the problem is the one originally proposed by Dijkstra. And it
is not always practical, especially when the list of required resources is not
completely known in advance.

 Solution 2: monitor
 Philosophers can eat if neither of their neighbors is eating. This
is comparable to a system where philosophers that cannot get the
second fork must put down the first fork before they try again. (no hold
and wait condition)

 This solution uses a single mutual exclusion lock. This lock is not
associated with the forks but with the decision procedures that can
change the states of the philosophers. This is ensured by the monitor.
The procedures test, pickup and putdown are local to the monitor
and share a mutual exclusion lock. The philosophers wanting to eat
do not hold a fork. When the monitor allows a philosopher who wants
to eat to continue, the philosopher will reacquire the first fork before
picking up the now available second fork. When done eating, the
philosopher will signal to the monitor that both forks are now available.

 To also guarantee that no philosopher starves, one could keep
track of the number of times a hungry philosopher cannot eat when his
neighbors put down their forks. If this number exceeds some limit, the
state of the philosopher could change to Starving, and the decision
procedure to pick up forks could be augmented to require that none of
the neighbors are starving.

 A philosopher, who cannot pick up forks because a neighbor is
starving, is effectively waiting for the neighbor's neighbor to finish
eating. This additional dependency reduces concurrency. Raising the
threshold for transition to the Starving state reduces this effect.

http://en.wikipedia.org/wiki/Monitor_%28synchronization%29

Multiple choice questions.

Q. Let S and Q be two semaphores initialized to 1, where P0 and P1
processes the following statements wait(S);wait(Q); ---;
signal(S);signal(Q) and wait(Q); wait(S);---;signal(Q);signal(S);
respectively. The above situation depicts a _________ .
1 Semaphore
2 Deadlock
3 Signal
4 Interrupt
Right Ans) 2
Q. _________ is the situation in which a process is waiting on another
process, which is also waiting on another process , which is waiting on
the first process. None of the processes involved in this circular wait are
making progress.
1 Deadlock
2 Starvation
3 Dormant
4 None of the above
Right Ans) 1

Q. The Banker’s algorithm is used
1 to prevent deadlock in operating systems
2 to detect deadlock in operating systems
3 to rectify a deadlocked state
4 none of the above
Right Ans) 1

Q. In one of the deadlock prevention methods, impose a total ordering
of all resource types, and require that each process requests resources
in an increasing order of enumeration. This overcomes the
_______________ condition of deadlock
1 Mutual exclusion
2 Hold and Wait
3 Circular Wait
4 No Preemption
Right Ans) 3

Q. Resource locking ________.
1 Allows multiple tasks to simultaneously use resource
2 Forces only one task to use any resource at any time
3 Can easily cause a dead lock condition
4 Is not used for disk drives
Right Ans) 2

Q. A set of resources' allocations such that the system can allocate
resources to each process in some order, and still avoid a deadlock is
called ________.
1 Unsafe state

2 Safe state
3 Starvation
4 Greeedy allocation
Right Ans) 2

Q. A process said to be in ___________ state if it was waiting for an
event that will never occur.
1 Safe
2 Unsafe
3 Starvation
4 Dead lock
Ans) 4

 Q. Consider a system with m resources of same type being shared by n
processes. Resources can be requested and released by processes only
on at a
time. The system is deadlock free if and only if
1. The sum of all max needs is < m+n
2. The sum of all max needs is > m+n
3. Both of above
4. None
Ans: 1

Q. Consider a system consisting of 4 resources of same type that are
share by 3 processes each of which needs at most two resources. Show
that the system is deadlock free
Ans:

If the system is deadlocked, it implies that each process is holding one
resource and is waiting for one more. Since there are 3 processes and 4
resources, one process must be able to obtain two resources. This process
requires no more resources and therefore it will return its resources when
done.

Q. A system has four processes P1 through P4 and two resource types
R1 and R2. It has 2 units of R1 and 3 units of R2.
Given that: P1 requests 2 units of R2 and 1 unit of R1, P2 holds 2 units
of R1 and 1 unit of R2, P3 holds 1 unit of R2, P4 requests 1 unit of R1
Show the resource graph for this state of the system. Is the system in
deadlock, and if so, which processes are involved?

 R1 R2

P1 1 2

P2 0 0

P3 0 0

Ans:

Given:

 R

 C A

Step 1: Initial stage Step 2: Process P2 completes
(dashed lines indicate requests)

Step 3: Process P4 completes Step 4: Process P3 completes

P4 1 0

R1 R2

2 3

 R1 R2

P1 0 0

P2 1 2

P3 0 1

P4 0 0

Step 5: Process P1 completes

There are many sequences in which the processes could be realize, but
process P2 must complete before process P1 as it hold the resources
requested by former.

Q. Given 5 total units of the resource of the same type, tell whether the
following system is in a safe or unsafe state.

R=5,

Ans. safe state

Q. Given a total of 5 units of resource type 1 and 4 units of resource type
2, tell whether the following system is in a safe or unsafe state. Show
your work.

 R1 R2

P1 2 3

P2 3 2

P3 4 4

Claimed Matrix C
 Allocation Matrix A

Ans: unsafe

Q. Given a total of 10
units of a resource type, and given the safe state shown below, should
process 2 be granted a request of 2 additional resources? Show your
work.

 P1 P2 P3 P4 P5

C= 5 6 6 2 4

Ans. Unsafe state

Q.
Consider the snapshot of a system.

 P1 P2 P3 P4

C= 2 3 4 5

 P1 P2 P3 P4

A= 1 1 2 0

 R1 R2

P1 1 1

P2 1 1

P3 2 1

 P1 P2 P3 P4 P5

A= 2 1 2 1 1

Process Allocation Claimed Available

Answer the following question using the banker‟s Algorithm
a. What is the content of matrix need?
b. Is the system in safe state?
c. If a request from process P1 arrives for (1,0,2) can the request be granted
immediately?

Q. Consider a system with three processes and three types of
resources with the following data.

Resource vector

 Claim
Matrix Allocation Matrix

Run the deadlock detection algorithm on the above example and check is the
system in a deadlock? If yes, then what are the process(es) that need to be
pre-empted and in what order, to ensure that deadlock is overcome?

P0 {0,1,0} {7,5,3} {3,3,2}

P1 {2,0,0} {3,2,2}

P2 {3,0,2} {9,0,2}

P3 {2,1,1} {2,2,2}

P4 {0,0,2} {4,3,3}

 A B C

P1 1 1 0

P2 2 0 1

P3 0 1 0

 A B C

R= 3 2 1

 A B C

P1 2 1 1

P2 2 1 1

P3 1 2 0

