

Concurrency

1. Basic Terminology & Definitions

Concurrency, Process synchronization, Mutual Exclusion, Race Condition,
Critical Section, Data Coherence, Deadlock, Livelock, starvation, atomic
operation, busy waiting, Semaphore, Monitor, message passing, mutex,

2. Principles, Approaches and Requirements

 Process computation synchronizations, properties of Critical Section
implementation, solution mechanisms to achieve concurrency, requirements
for mutual exclusion, design issues for concurrency.

3. . Software approaches

Dekker‟s solution, Peterson‟s solution, Comparison of both solutions

4. Hardware approaches
Interrupt disabling, special instructions

5. Support from Operating systems and Programming Languages
Semaphores, Monitors, Message passing

6. Concurrency Mechanisms in different OS
Concurrency in Unix, Solaris and windows

7. Solutions to classical problems

Solutions to producer-consumer problem, readers-writers problem,
sleeping barbershop problem using semaphore, monitors and message
passing

8. Multiple Choice Questions

1. Basic Terminology & Definitions

Q. Define Concurrency, Process synchronization, Mutual Exclusion, Race
Condition, Critical Section, Data Coherence, Deadlock, Livelock, starvation

Ans.
Concurrency : Concurrency is defined as a property of systems in which several
processes are executing at the same time.

Process synchronization: This refers to the idea that multiple processes are to
join up or handshake at a certain point, so as to reach an agreement or commit to
a certain sequence of actions.

Mutual Exclusion: Mutual Exclusion is the ability to exclude all other processes
from a course of actions while one process is granted that ability

Race Condition: Race condition is defined as a flaw in process whereby the
output or result of the process is unexpectedly and critically dependent on the
sequence or timing of other events. The term originates with the idea of two
processes racing each other to influence the output first.

A race condition occurs when multiple processes or threads read and write data
items so that the final result depends on the order of execution of instructions in
the multiple processes.

Example : consider two processes, P1 and P2, share the global variable a. if
while executing P1 updates a to the value 1, and some time later P2 updates a to
the value 2.Thus, the two tasks are in a race to write variable a. In this example
the “loser” of the race (the process that updates last) determines the final value of
a.

Critical Section: Critical section is a piece of code that accesses a shared
resource (data structure or device) that must not be concurrently accessed by
more than one thread of execution.

Data Coherence: Data coherence refers to the consistency of data or variables

stored in shared memory.

Example: Consider two data items a and b that are required to be maintained in
a relationship a=b in a certain application.

Now consider two processes:

 P1: a=a+1;
 b=b+1;

P2: a=2*a;
 b=2*b;

if these processes P1 and P2 execute concurrently respecting mutual
 exclusion on a and b in the sequence as:

 a=a+1;
 b=2*b;

b=b+1;
a=2*a;

Then this execution does not maintain the a=b relationship. i.e. execution of P1 and
P2 has violated data coherence.

Deadlock: Deadlock is defined as a situation when multiple processes are waiting
for the availability of a resource that will not become available as it is held by another
process which is in similar wait state.

Livelock: A condition in which one or more processes continuously change their
state in response to changes in the other process(es) without doing any useful work.
This is similar to deadlock in that no progress is made but differs in that neither
process is blocked nor waiting for anything.

Starvation: A condition in which a process is indefinitely delayed because other
processes are always given the preference.

Q. Define atomic operation, busy waiting, Semaphore, Monitor, message
passing, mutex.

Ans:
Atomic Operation: A sequence of one or more statements that appears to be
indivisible; that is, no other process can see an intermediate state or interrupt the
operation.

Busy Waiting: it is repeated execution of some code while it is waiting for some
event to occur.
 This should generally be avoided as it simply wastes the CPU cycles and does
not give any fruitful output.

Semaphore: Semaphore is an integer variable that can be initialized to some value.
 The semaphore values are used for signaling the processes for
communication. The semaphores can be operated upon by three operations viz,
initialize, increment and decrement. All these operations are atomic in nature.
Depending on exact definition of semaphore, the decrement (wait) operation may
block a process and the increment (signal) operation may unblock a process.

Semaphores are supported by operating system to achieve concurrency and
synchronization.

Monitor: Monitor is a programming language construct that encapsulates variables,
access procedures and initialization code within an abstract data type.

The processes have only one entry and exit points to the monitor. Processes
can access the same by invoking one of the procedures contained in monitor, which
in turn can access the data and variables local to the monitor. To achieve mutual
exclusion, only one process can be active inside a monitor. Generally, the access

procedures are critical sections. A monitor may have a queue of processes that are
waiting to access it.

A monitor supports synchronization by the use of condition variables that
are contained within the monitor and accessible only within the monitor. Condition
variables are a special data type in monitors, which are operated on by two
functions:

 cwait(c): Suspend execution of the calling process on condition c. The
monitor is now available for use by another process.

 csignal(c): Resume execution of some process blocked after a cwait
on the same condition. If there are several such processes, choose one of

them; if there is no such process, do nothing.

Message Passing: message passing is a mechanism by which processes interact
with each other to achieve synchronization and communication.
 Message passing is implemented with two primitives as send and receive. It
can be used in uniprocessor, shared-memory multiprocessors as well as in
distributed systems.

Mutex: Short for mutual exclusion object. A mutex is a program object that
allows multiple program threads to share the same resource, such as file access, but
not simultaneously. A mutex object only allows one thread into a controlled section,
forcing other threads which attempt to gain access to that section to wait until the
first thread has exited from that section.

When a program is started, a mutex is created with a unique name. After this

stage, any thread that needs the resource must lock the mutex from other threads
while it is using the resource. The mutex is set to unlock when the data is no longer
needed or the routine is finished.

Principles, Approaches and Requirements

Q. what are the different types of process computation synchronizations?
Ans: The processes of computation use two kinds of synchronizations: Control
Synchronization and Data Synchronization
Control Synchronization: This kind of synchronization is needed if a process
wishes to perform some action ai only after some other process have executed a set
of actions {aj} or only when a set of conditions {ck} hold.
 A simple example is a process which waits for its child process to complete
before terminating itself.
Data Access Synchronization: Race conditions may arise if processes access
shared data in an uncoordinated manner.
 Data access synchronization is used to access shared data in a mutually
exclusive manner. It avoids race conditions and safeguards consistency of shared
data.

Q. What is the basic principle of synchronization?
Ans: The basic principle used to implement control or data synchronization is to
block a process until an appropriate condition is fulfilled.
 Thus to implement synchronization a process pi can be blocked till some
process pk reaches a specific point in its execution. Mutual exclusion over shared
data is implemented by blocking a process till another process finishes accessing the
shared data.

Q. What are the properties of Critical Section implementation?
Ans: A CS implementation for any data item ds should work as a scheduler for a
resource. It must keep track of all processes those wish to enter a CS for ds and
select a process for entry in a CS in accordance with the notions of mutual exclusion,
efficiency and fairness.
The essential properties of any CS implementation can be summarized as follows:

1. Correctness: at any moment, at most one process may execute a CS for a
data item ds.

2. Progress: When a CS is not in use, one of the processes wishing to enter it
will be granted entry to the CS.

3. Bounded wait: After a process Pi has indicated its desire to enter a CS for ds,
the number of times other processes can gain entry to a Cs for ds ahead of pi
is bounded by a finite integer.

4. Deadlock freedom: The implantation should be free of deadlock.

Q. What are the solution mechanisms to achieve concurrency?
Ans. The solution mechanisms to achieve concurrency are:

 Software approach: Here no hardware, OS, or programming language level
supported is assumed. This mechanism burdens programmers to write the
programs (which when executed becomes processes) to achieve concurrency
themselves. Dekker‟s or Peterson‟s algorithms are known for the software
approach solutions to mutual exclusion.

 Hardware approach : This approach makes use of special hardware
instructions and control over the hardware such as disabling the interrupts.

 Support from operating systems and programming languages: Here, the
operating system offers support to some signals those may help in bringing
mutual exclusion or the programmers can be provided with language
constructs or library with which they can easily write the code for the process
synchronize with each other.

Q. what are the requirements for mutual exclusion?
Ans: Any mechanism that strives to achieve mutual exclusion must respect following
set of requirements.

1. Mutual exclusion must be enforced: Only one process at a time is allowed
into its critical section

2. A process that halts in its noncritical section must do so without interfering
with other processes.

3. The solution must ensure no deadlock or starvation.
4. When no process is in a critical section, any process that requests entry to

its critical section must be permitted to enter without delay.
5. No assumptions are made about relative process speeds or number of

processors.
6. A process remains inside its critical section for a finite time only.

Q. What are the design issues where concurrency is relevant?
Ans. The design issues where concurrency is relevant:

 Communication among processes,

 sharing of and competing for resources,

 synchronization of the activities of multiple processes, and

 allocation of processor time to processes.

/* PROCESS 1 */

void P1
{
while (true) {
/* preceding code /;
EnterCriticalSection
(Ra);
/* Execute Critical
Section */;
ExitCriticalSection (Ra);
/* remaining code */;
}
}

/* PROCESS 2 */

void P2
{
while (true) {
/* preceding code */;
EnterCriticalSection
(Ra);
/* Execute Critical
Section */;
ExitCriticalSection (Ra);
/* remaining code */;
}
}

…

/* PROCESS n */

void Pn
{
while (true) {
/* preceding code */;
EnterCriticalSection
(Ra);
/* Execute Critical
Section */;
ExitCriticalSection (Ra);
/* remaining code */;
}
}

Figure: llustration of Mutual Exclusion

Q. What are advantages of Mutual Exclusion?

Mutual exclusion techniques can be used to resolve conflicts, such as
competition for resources, and to synchronize processes so that they can cooperate.

3. Software approaches

Q. Explain the Dekker’s four attempts with mutual exclusion.
Ans. Dekker suggested total five solutions to mutual exclusion one by one to
achieve mutual exclusion. The first four solutions were not complete and all of them
suffered with busy waiting.

If two processes attempt to enter a critical section at the same time, the
algorithm will allow only one process in, based on whose turn it is. If one process is
already in the critical section, the other process will busy wait for the first process to
exit. This is done by the use of two flags, flag[0] and flag[1], which indicate an
intention to enter the critical section and a turn variable which indicates who has
priority between the two processes.

Attempt One Attempt Two

/* Process 0*/
.
.
.
while(turn!=0)
/* do nothing */;
/*critical section*/;
turn =1;
.
.

/* Process 1*/
.
.
.
while(turn!=1)
/* do nothing */;
/*critical section*/;
turn =0;
.
.

/* Process 0*/
.
.
.
while(flag[1])
/* do nothing */;
flag[0]=true;
/*critical section*/;
flag[0]=false;
.
.
.

/* Process 1*/
.
.
.
while(flag[0])
/* do nothing */;
flag[1]=true;
/*critical section*/;
flag[1]=false;
.
.
.

First Attempt:

 Succeeds in enforcing mutual
exclusion

 Uses variable to control which
thread can execute

 Constantly tests whether critical
section is available

o Busy waiting
o Wastes significant

processor time

 Problem known as strict
alternation synchronization

o Each thread can execute
only in strict alternation

Second Attempt:

 Removes strict alternation
synchronization

 Violates mutual exclusion
o Thread could be

preempted while
updating flag variable

 Not an appropriate solution

Attempt Three Attempt Four

/* Process 0*/
.
.
.
flag[0]=true;
while(flag[1])
/* do nothing */;
/*critical section*/;
flag[0]=false;
;
.
.

/* Process 1*/
.
.
.
flag[1]=true;
while(flag[0])
/* do nothing */;
/*critical section*/;
flag[1]=false;
;
.
.

/* Process 0*/
.
.
.
flag[0]=true;
while(flag[1])
{ flag[0]=false;
/*delay*/
flag[0]=true;
}
 /*critical section*/;
flag[0]=false;
.
.

/* Process 1*/
.
.
.
flag[1]=true;
while(flag[0])
{ flag[1]=false;
/*delay*/
flag[1]=true;
}
 /*critical section*/;
flag[1]=false;
.
.

Third Attempt:

 Set critical section flag before
entering critical section test

o Once again guarantees
mutual exclusion

 Introduces possibility of
deadlock

o Both threads could set
flag simultaneously

o Neither would ever be
able to break out of loop

 Not a solution to the mutual
exclusion

Fourth Attempt:

 Sets flag to false for small
periods of time to yield control

 Solves previous problems,
introduces indefinite
postponement

o Both threads could set
flags to same values at
same time

o Would require both
threads to execute in
tandem (unlikely but
possible)

 Unacceptable in mission- or
business-critical systems

Unfortunately all of the above solutions did not work well but finally he had a perfect
solution wherein all the processes run in synchronization.

Dekker’s correct solution:

 boolean flag [2];
int turn;

 void main()
{ flag[0]=flag[1]=false;
turn=1;
parbegin(P0,P1);
}

void P0()
{
 while (true)
 {
 flag[0]=true;
 while (flag[1])
 if (turn==1)
 {
 flag[0]=false;
 while (turn==1)
 /* Do Nothing*/
 flag[0]=true;
 }
 /*Critical Section */
 turn=1;
 flag[0]=false;
 /*Remainder Code*/
 }
}

void P1()
{
 while (true)
 {
 flag[1]=true;
 while (flag[0])
 if (turn==0)
 {
 flag[1]=false;
 while (turn==0)
 /* Do Nothing*/
 flag[1]=true;
 }
 /*Critical Section */
 turn=0;
 flag[1]=false;
 /*Remainder Code*/
 }
}

The algorithm uses two variables, flag and turn. A flag[n] value of true

indicates that the process wants to enter the critical section. The variable turn holds
the ID of the process whose turn it is. Entrance to the critical section is granted for
process P0 if P1 does not want to enter its critical section or if P1 has given priority
to P0 by setting turn to 0.The code above gives the solution by using notion of
favored threads to determine entry into critical sections. It resolves conflict over
which thread should execute first. The central concept here is, „each thread
temporarily unsets critical section request flag and the favored status alternates
between threads‟. Thus this algorithm guarantees mutual exclusion and avoids
previous problems of deadlock, indefinite postponement.

The characteristics of Dekker’s solution,

 Proper solution

 Guarantees mutual exclusion

 Avoids previous problems of deadlock, indefinite postponement

 Uses notion of favored threads to determine entry into critical sections
o Resolves conflict over which thread should execute first
o Each thread temporarily unsets critical section request flag
o Favored status alternates between threads

Dekker‟s algorithm wasn‟t accepted as a solution to mutual exclusion as it

could support only two processes and in the real scenario system has many
processes to handle.

Q. Explain the Peterson’s solution to Mutual Exclusion.
Ans. Peterson‟s solution for the mutual exclusion is far simpler than that of the
Dekker‟s solution and as it could also support n number of processes, it is
considered as the very first complete solution for the concurrency control in that
particular category.

void Pi()
{
 While (true)
 {
 flag[i] := true;
 turn := j;
 while (flag[j] and turn = j)
 /*Do Nothing*/ ;
 /*Critical Section */
 flag[i] := false;
 /*Remainder Section*/
 }
}

boolean flag[n];
Int turn;

void main()
{
 flag[i] := false;
 flag[j] := false;

parbegin(Pi,Pj,….Pn);
}

Figure: Peterson‟s Solution

Q. Compare Dekker’s and Peterson’s algorithms
The comparison between two algorithms can be enumerated as

 The Peterson‟s solution is simpler than Dekker‟s algorithm

 If process 1 has set p1wantstoenter to true, process 2 cannot enter its
critical section.

 Mutual blocking is prevented -- if process 1 is blocked in its while loop, then
p2 wantstoenter is true and favoredprocess = second.

 Process 2 cannot monopolize access to the critical section because it has to
set favoredprocess to first before each attempt to enter its critical section.

 This algorithm can be generalized to the case of n processes.

Dekker's algorithm is the historically first software solution to mutual exclusion
problem for 2-process case. The first software solution for n-process case was
subsequently proposed by Dijkstra. These two algorithms have become de facto
examples of mutual exclusion algorithms, for their historical importance. Since the
publication of Dijkstra's algorithm, there have been many solutions proposed in the
literature. In that, Peterson's algorithm is one among the very popular algorithms.
Peterson's algorithm has been extensively analyzed for its elegance and
compactness. .

Q. Write the failure causes of Dekker’s four attempts with software solution to
mutual exclusion.
Ans. The reasons why the first four attempts to enforce mutual exclusion can be
summarized as given in the following table.

Attempt Failure causes

Attempt 1 Busy waiting

 Process one always enters first.

 Strict alteration

 Execution speed is dictated by slower process in set

 Failure of one process permanently blocks another one

Attempt 2 Busy waiting

 Failure of one process may permanently block another one

 Solution is not independent of relative process execution
speeds

 Does not guarantee mutual exclusion

Attempt 3 Busy waiting

 Causes deadlock

Attempt 4 Causes livelock

 indefinite postponement

Q. What is the problem of busy wait?
Ans. A process may have a CS implemented with a simple code as,

While(some other process is in CS)
 {do nothing}
 Critical
 Section

In the above while loop, the process checks for the given condition and if the
condition is true, it keeps looping until the other process exits its CS. Such a situation
in which a process repeatedly keeps on checking if a condition that would enable it
to get past a situation point is satisfied is called Busy Waiting. Thus the busy wait
simply keeps CPU busy in executing a process even when the process does
nothing. If more processes with lower priority are waiting, they are denied the CPU,
thus their response times and turnaround times suffer. All these things make the
overall system performance suffer. It can also cause deadlock and make the
processes starve for CPU.

To avoid busy waits, a process waiting for an entry to a CS should be put into
a blocked state. This state should be changed to ready only when it can be allowed
to enter its CS.

4. Hardware approaches

Q. what are the hardware approaches to enforce mutual exclusion?
Ans. The hardware approach suggests two solutions to enforce mutual exclusion
as: disabling interrupt and use of special instructions.

Disabling interrupt: In a uniprocessor system, concurrent processes are not
overlapped but they can only be interleaved. Furthermore, a process executes until it
calls an OS service or until it is interrupted. Thus, it is sufficient to prevent a process
from being interrupted to guarantee mutual exclusion, This capability can be
provided in the form of primitives defined by the OS kernel for disabling and enabling
interrupts.

The pseudo code:

while (true) {
/* disable interrupts */;
/* critical section */;
/* enable interrupts */;
/* remainder */;
}

As the processes are not interrupted, the mutual exclusion is guaranteed.

Though seems simple, the price paid for the same is very high. As the processor is
not allowed to interleave the processes, the efficiency and overall system
performance degrades significantly.

Also, this particular solution will not work with multiprocessor architecture.
When the computer includes more than one processor, it is possible (and typical) for
more than one process to be executing at a time. In this case, disabled interrupts do
not guarantee mutual exclusion.

Special Machine Instructions:
 In a multiprocessor systems, several processors share main memory. Moreover, the
interrupt disabling cannot help the mutual exclusion. So to give mutually exclusive
access to any memory location the processor designers have proposed several
machine instructions that carry out some actions atomically, with one instruction
fetch cycle.

Examples of such some atomic instructions are given here.
Compare & Swap Instruction

int compare_and_swap (int *word, int testvalue, int newvalue)
{
int oldvalue;
oldvalue = *word;
if (oldvalue == testvalue) *word = newvalue;
return oldvalue;
}

Exchange Instruction

void exchange (int register, int memory)
{
int temp;
temp = memory;
memory = register;
register = temp;
}

Q. Discusses advantages and disadvantages of hardware approach to enforce
mutual exclusion.
Ans.
The use of a special machine instruction to enforce mutual exclusion has a number
of advantages:

 The solution works with any number of processes on uniprocessor as well as
multiprocessors architectures.

 It is very simple and therefore easy to verify.

 It can also support multiple critical sections; and each critical section can be
defined by its own variable.

Disadvantages:

 Busy waiting is employed. While the other process is in critical section, the
said process has to wait for the same. This continues to consume processor
time giving poor system performance

 Starvation is possible. When a process leaves a critical section and more
than one process is waiting, the selection of a waiting process is arbitrary.
Thus, some process could indefinitely be denied access.

 Deadlock is possible. Consider the following scenario on a single-processor
system. Process P1 executes the special instruction (e.g., compare&swap,
exchange) and enters its critical section. P1 is then interrupted to give the
processor to P2, which has higher priority. If P2 now attempts to use the same
resource as P1, it will be denied access because of the mutual exclusion
mechanism. Thus it will go into a busy waiting loop. However, P1 will never be
dispatched because it is of lower priority than another ready process, P2.
Because of the drawbacks of both the software and hardware solutions just
outlined, we need to look for other mechanisms.

Q. What is indivisible or atomic operation?
Ans. An atomic operation on a asset of data items { ds } is an operation that can not
be executed concurrently with any other operation involving a data item included in {
ds }
Example. Special operation : Exchange (XCHG)

void exchange (int register, int memory)
{
int temp;

temp = memory;
memory = register;
register = temp;
}

The atomic operations can prove solution to race conditions and data coherence as
they do not allow preemption of process while in atomic mode.

5. Support from Operating systems and Programming
Languages

Q. what is the significance of signals in process synchronizations?
Ans.The processes use control synchronization to coordinate their activities with
respect to one another. A frequent requirement in process synchronization is that a
process pi should perform an action ai only after process pj has performed some
action aj. This synchronization requirement is met using the technique of signaling.

The signaling can be achieved with the use of Boolean variables or flags

which will indicate whether a process Pi has performed action ai for a process Pj to
perform action aj. All the processes those should precede Pi can check the contents
of flag variables before performing the coordination-requiring actions and accordingly
can proceed further or block themselves.

Signaling when implemented well with a blend of atomic operations can help a

lot and can avoid the race conditions by guarantying the proper coordinated
synchronization among the processes.

Example: when finished writing, the writer in readers-writers problem should activate
one of the waiting writer or activate all the waiting readers by sending them
respective signals.
Semaphores and monitors make use of signals for synchronizations.

A. Semaphores

Q. What are different types of semaphore?
Ans: The different types of semaphore are: General or counting Semaphore, Binary
Semaphore, Strong Semaphore, and Weak Semaphore.

Binary Semaphore: Binary Semaphore is a semaphore that takes on only the
values 0 and 1.

General or counting Semaphore: Any Semaphore that is not restricted to have
value only 0 and 1 and can have values >=2 are called general or counting
semaphores.
In other words, the nonbinary semaphore is often referred to as either a counting
semaphore or a general semaphore.

Strong Semaphore: A semaphore whose definition includes FCFS policy when it is
unblocked from the blocked queue, is called a Strong Semaphore.

Weak Semaphore: A semaphore whose definition does not include any policy when
it is unblocked from the blocked queue, is called a Weak Semaphore.

Q. Differentiate between mutex and semaphore.
Mutex: Mutexes are typically used to serialize access to a section of re-entrant code
that cannot be executed concurrently by more than one thread. A mutex object only

allows one thread into a controlled section, forcing other threads which attempt to
gain access to that section to wait until the first thread has exited from that section

Semaphore: A semaphore restricts the number of simultaneous users of a shared
resource up to a maximum number. Threads can request access to the resource
(decrementing the semaphore), and can signal that they have finished using the
resource (incrementing the semaphore).
Example: Mutex is a key to a toilet. One person can have the key - occupy the toilet
- at the time. When finished, the person gives (frees) the key to the next person in
the queue. While semaphore is the number of free identical toilet keys. If one has
four toilets with identical locks and keys then the semaphore count - the count of
keys - is set to 4 at beginning (all four toilets are free), then the count value is
decremented as people are coming in. If all toilets are full, ie. there are no free keys
left, the semaphore count is 0. Now, when eq. one person leaves the toilet,
semaphore is increased to 1 (one free key), and given to the next person in the
queue.

Q. List and explain semaphore primitives.
Ans. Semaphore is an integer variable that can be initialized to some value.
 The semaphore values are used for signaling the processes for
communication. The semaphores can be operated upon by three operations viz,
initialize, increment and decrement. All these operations are atomic in nature.
Depending on exact definition of semaphore, the decrement (wait) operation may
block a process and the increment (signal) operation may unblock a process.

struct semaphore {
int count;
queueType queue;
};

void semWait(semaphore s)
{
s.count--;
if (s.count < 0) {
/* place this process in s.queue */;
/* block this process */;
}
}

void semSignal(semaphore s)
{
s.count++;
if (s.count <= 0) {
/* remove a process P from s.queue */;
/* place process P on ready list */;
}
}

Figure: Definition of Semaphore Primitives

The above primitives can be used to bring synchronization among
communicating processes as,

/* program mutualexclusion */

const int n = /* number of processes */;

semaphore s = 1;
void P(int i)
{
while (true) {
semWait(s);
/* critical section */;
semSignal(s);
/* remainder */;
}
}

void main()
{
parbegin (P(1), P(2), . . ., P(n));
}

Q. What are advantages and disadvantages of semaphore implementation?
Ans.
The advantages of semaphore implementation are:

1. The first and foremost advantage is simplicity.
2. In semaphores there is no spinning, hence no waste of resources due to no

busy waiting. i.e. unnecessary CPU time is not spent on checking if a
condition is satisfied to allow the thread to access the critical section.

3. Semaphores permit more than one thread to access the critical section, in
contrast to alternative solution of synchronization like monitors, which follow
the mutual exclusion principle strictly. Hence, semaphores allow flexible
resource management.

4. Finally, semaphores are machine independent, as they are implemented in
the machine independent code of the microkernel services.

The disadvantages of semaphore:
1. The technique of semaphore is more prone to programmer error. The

programmer may loose track of signal and wait signals or those operations
can be misplaced. The implementation can also lead to deadlock or violation
of mutual exclusion due to programmer error.

2. The semaphore implementations are difficult to debug and fix.
3. Semaphores does not support modularity.
4. Semaphores are quite impractical when it comes to large scale use.

Monitors

Q. Explain the structure of monitor.
A monitor is an object or module intended to be used safely by more than one
thread. The defining characteristic of a monitor is that its methods are executed with
mutual exclusion. That is, at each point in time, at most one thread may be executing
any of its methods. This mutual exclusion greatly simplifies reasoning about the
implementation of monitors compared to reasoning about parallel code that updates
a data structure.

 In some applications threads attempting an operation may need to wait until
some condition P holds true. The solution is condition variables. Conceptually a
condition variable is a queue of threads, associated with a monitor, on which a
thread may wait for some condition to become true. Thus each condition variable
is associated with an assertion Pc. While a thread is waiting on a condition variable,
that thread is not considered to occupy the monitor, and so other threads may enter
the monitor to change the monitor's state. In most types of monitors, these other
threads may signal the condition variable c to indicate that assertion P is true in the
current state.

Thus there are two main operations on condition variables:

 Wait(c) is called by a thread that needs to wait until the assertion Pc is true
before proceeding. While the thread is waiting, it does not occupy the monitor.

 Signal(c) (sometimes written as notify c) is called by a thread to indicate that
the assertion P is true.

When a signal happens on a condition variable that at least one other thread is
waiting on, there are at least two threads that could then occupy the monitor: the
thread that signals and any one of the threads that is waiting. In order to at most one
thread occupies the monitor at each time, a choice must be made. Two schools of
thought exist on how best to resolve this choice. This leads to two kinds of condition
variables which will be examined next:

 Blocking condition variables or Signal and Wait give priority to a signaled
thread.

 Nonblocking condition variables or Signal and Continue give priority to the
signaling thread.

enter the monitor:
 enter the method
 if the monitor is locked
 add this thread to e
 block this thread
 else
 lock the monitor

leave the monitor:
 schedule
 return from the method

http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Mutual_exclusion
http://en.wikipedia.org/wiki/Method_%28computer_science%29

wait :
 add this thread to .q
 schedule
 block this thread

signal :
 if there is a thread waiting on .q
 select and remove one such thread t from .q
 (t is called "the signaled thread")
 add this thread to s
 restart t
 (so t will occupy the monitor next)
 block this thread

schedule :
 if there is a thread on s
 select and remove one thread from s and restart it
 (this thread will occupy the monitor next)
 else if there is a thread on e
 select and remove one thread from e and restart it
 (this thread will occupy the monitor next)
 else
 unlock the monitor
 (the monitor will become unoccupied)

Figure: pseudopodia for monitor operations

Figure: structure of monitor

Q. what are the aspects of monitor type?
Ans. The four aspects of monitor type are: Data declaration, Data initialization,
Operations on shared data and the synchronization operations. They can be
detailed in brief as follows.

a. Data declaration: shared data and condition variables are declared in this
section. Copies of this data exist in every object of a monitor type.

b. Data initialization: data are initialized when a monitor i.e. an object type is
created.

c. Operations on shared data: operations on shared data are coded as
procedures of the monitor type. The monitor insures that these operations
are executed in a mutually exclusive manner.

d. Synchronization operation: procedures of the monitor type use the
synchronization operations wait and signal over condition variables to
synchronize execution of processes.

C. Message passing

Q. How does the message passing works?
The message passing is normally provided in the form of a pair of primitives:
send (destination, message)
receive (source, message)
This is the minimum set of operations needed for processes to engage in message
passing. A process sends information in the form of a message to another process
designated by a destination. A process receives information by executing the receive
primitive, indicating the source and the message.

Q. What are the design characteristics of message passing systems for
Interprocess Communication?
The main issues in designing IPC using message passing are:

1. Synchronization on sending and receiving side
2. Sender and receiver addressing
3. The actual message format
4. The queuing discipline for handling the waiting queues

Q. Write a program for mutual exclusion using messages.

/* program MutualExclusion */
const int n = /* number of process */
void P(int i)
{

message msg;
while (true) {
 receive (box, msg);

 /* critical section */;
 send (box, msg);
 /* remainder */;
 }
}

void main()
{
 create mailbox (box);
 send (box, null);

parbegin (P(1), P(2), . . ., P(n));
}

Figure: Definition primitive for mutual exclusion using message passing

Q. what is general message format in IPC using message passing?
The message format actually depends on the messaging facility and if the facility is
running on standalone computer or on a distributed system. But in broader sense,
the message format can be depicted as

Figure: Message Format in IPC using message passing

The message is typically divided into two parts viz a header and a body. The

header contains message information and the body contains the actual message.

Q. What are the advantages of having message passing as the solution to
mutual exclusion?
Message passing achieves synchronization and communication to enforce mutual
exclusion. Also, it can extend itself to implementation in distributed systems as well
as in shared-memory multiprocessor and uniprocessor systems.

Q. What are the advantages of using mailboxes in message passing systems?
Give example scenarios those may use mailboxes for IPC.

The mailboxes are used in indirect addressing mode of message passing.
The advantages of this scheme are:

1. The decoupling sender and receiver bring in greater flexibility in use of
messages.

2. The sender-receiver relationship can be extended to one-to-many, many-to-
one and many-to-many from the simple one-to-one interaction.

3. The sender and receiver processes can be geographically wide apart and
they need not be running at all instances of times.

6. Concurrency Mechanisms in different OS

Q. Unix concurrency mechanisms.
Ans
Unix uses different concurrency mechanisms as: Pipes, Messages, shared memory,
semaphores and signals.
Pipes: Pipes are the circular buffers those allow two processes to communicate.
Pipes are generally written by one process and read by another, thus they act as
shared buffer for reader and writer processes. Operating system enforced mutual
exclusion on pipes for reading and writing processes. As the shared buffer is not
infinite, the write requests are executed iff there is any room for more data to
accommodate, otherwise the process gets blocked. Similarly read request is blocked
in case it wants to read more bytes than available in the pipe.
 For this, unix uses two types of pipes called as Named pipes and unnamed
pipes.

Messages: Messages are text blocks with accompanying type which are exchanged
between processes who wish to communicate with each other. The receiver process
can either retrieve messages in FIFO order or by message type. A process may get
suspended if it tries to send a message to a full message queue. Also the process
reading an empty queue gets suspended. On the contrary if a process tries to read
message of a certain type which is not currently available in message queue does
not get suspended or blocked but fails.

 UNIX provides msgsnd() and msgrcv() system calls for processes to
engage in message passing. Every process has an associated message queue,
which functions like a mailbox.

Shared memory: Apart from pipes and messages, shared virtual memory blocks
can be used by multiple processes for the communication. Amongst all, this is the
fastest form of interprocess communication. Here, the mutual exclusion is required to
be provided by the processes themselves and not by the OS.

Semaphores: semaphores are the special variables those can be initialized and
operated upon by the operations wait() and signal(). Operating systems handle the
given semaphore operations.
 Unix SVR4 uses a generalization of the semWait() and semSignal() primitives.
The semaphores have associated queues of processes blocked on that semaphore.
A semaphore used here consists of the following elements:

 Current value of the semaphore

 Process ID of the last process to operate on the semaphore

 Number of processes waiting for the semaphore value to be greater than its
current value

 Number of processes waiting for the semaphore value to be zero
Associated with the semaphore are queues of processes suspended on that
semaphore.

 Signals: signals are software mechanism that inform a process of the occurrence of
asynchronous events.

Here a signal is delivered by updating a field in the process table for the
process to which the signal is being sent.

Q. comment on synchronization in Solaris.

Ans. To achieve synchronization, Solaris uses adaptive mutexes, condition
variables, semaphores, reader-writer locks and turnstiles.
 The adaptive mutex controls access to every critical resource in mutually
exclusive manner. On multiprocessor systems, It works as a standard semaphore
that runs as a spinlock, i.e. if the data are locked and thus inaccessible, the adaptive
mutex follows one of the two solutions as,

1. If a lock is held by some process that is running on another processor, the
thread spins because the lock is likely to get released soon.

2. If the thread is not running, the thread blocks and sleeps to get awakened by
the lock release event. i.e. it will not spin while waiting as the lock may not get
freed immediately.

The adaptive mutexes will be held if a lock will be held for less than a few

hundred instructions. For the longer code segments condition variables are used.
Readers-Writers lock are used if the data are accessed very frequently but they are
used in read-only fashion. As they can allow multiple data reading threads
concurrently, this readers-writers locks prove better than semaphores.
 Solaris uses turnstiles to order the list of threads waiting to acquire either an
adaptive mutex or a reader-writer lock. Turnstile is actually a queue structure
containing threads blocked on a lock.
The locking technique used by kernel is implemented for user level threads, too.
Thus provides same types of locks both inside and outside kernel.

Q. what are Windows NT concurrency mechanisms?
Windows NT uses synchronization objects as

1. Process
2. Thread
3. File
4. Console input
5. file change notification
6. mutex
7. semaphore
8. event
9. waitable timer

Solutions to classical problems

Q. What is Producer-consumer problem? What are the properties of a good
solution to producer-consumer problem?
Ans. The Producer-consumer problem can be stated as: “There are one or more
producers generating some type of data (records, characters) and placing these in a
buffer. There is a single consumer that is taking items out of the buffer one at a time.
The system is to be constrained to prevent the overlap of buffer operations. That is,
only one agent (producer or consumer) may access the buffer at any one time. The
problem is to make sure that the producer won‟t try to add data into the buffer if it‟s
full and that the consumer won‟t try to remove data from an empty buffer.”
 This problem has multiple solutions and various problem relaxations as well.
For example, this problem can be viewed as with infinite buffer in the simple case
and later on it can also have the solution with bounded buffers, too.
A solution to the Producer-consumer problem must satisfy following conditions:

1. A producer must not overwrite a full buffer.

2. A consumer must not consume an empty buffer.

3. Producers and consumers must access buffer in mutually exclusive manner.

4. Information must be consumed in the same sequence in which it is put into

the buffer, i.e. FIFO order.

Q. What is readers-writers problem? What are the correctness conditions of
readers-writers problem solution?
Ans. The readers/writers problem is defined as follows: There is a data area shared
among a number of processes. The data area could be a file, a block of main
memory, or even a bank of processor registers. There are a number of processes
that only read the data area (readers) and a number that only write to the data area
(writers).

The correctness conditions those can be imposed on a readers-writers problem
solution are:

1. Many readers can read the data concurrently.

2. No reader-writer combination is allowed at a time.

3. Only one writer can write at a time.

4. A reader has a non-preemptive priority over writers. i.e it gets access to

shared data ahead of a waiting writer, though it does not preempt an active

writer.

Q. What is Barbershop problem?
Ans. The Barbershop problem is defined as: A barbershop has three chairs,
three barbers and a waiting area that can accommodate four customers on a sofa
and a standing room for additional customers. Fire codes limit the total number

of customers in the shop to be 20. Any new customer entering shop will check
the max number of customers allowed in shop. Then he checks first sofa and
then barber chair if free. The barber goes to sleep if there is no customer in the
chair and the customer leaves the shop when barber notifies him that the work is
done. The problem is to design a solution in which all the customers coordinate
with each other irrespective of where they are-in barber chair, sofa, standing
area, entering or exiting the shop, the barber should not cut in air when no
customer in chair, and the customer need not wait for longer time when he‟s
already in chair and maximum of the users should be serviced and the solution
should also respect mutual exclusion and should avoid deadlock, livelock and
starvation.

Q. Give examples of Readers-Writers and Producer-Consumer problem.
1. Ans. A print service is a good example of producer-consumer concept in OS

domain. A print daemon is a consumer process. A fixed sized queue of print

requests is the bounded buffer. A process that adds a print request to the

queue is a producer process.

2. Ans. For example, the readers and writers may share a bank account. The

reader processes print statement and stat analysis also reads data from the

same bank accounts so they can run concurrently. While the debit and credit

functions modify the balance in account so obviously they can be termed as

writers and only one of them should be active at any instance of time when

they want to modify the data.

Q. Give the solution for Readers-Writers problem using semaphores.
(readers have priority)

/* program Readers-Writers */
int ReadCount;
semaphore x = 1,wsem = 1;
void ProcessReader()
{

while (true){
 wait (x);
 readcount++;

 if(readcount == 1)
 wait (wsem);
 signal (x);

 READUNIT();
 wait (x);
 readcount;

 if(readcount == 0)
 signal (wsem);
 signal (x);

}
}

void ProcessWriter()
{

while (true){
 wait (wsem);

 WRITEUNIT();
 signal (wsem);

}
}

void main()
{

readcount = 0;
parbegin (reader,writer);

}

This solution works for one or more readers and writers. The semaphore
wsem enforces mutual exclusion. Thus when one writer is writing, no other writer or
any reader is allowed to access the data area. The code given above obeys all the
correctness characteristics discussed above. The global variable ReadCount is used
to keep track of the number of readers, and the semaphore x is used to assure that
ReadCount is updated properly.

Q. Write a solution to the Bounded-Buffer Producer/Consumer Problem Using
Semaphores.

Ans.

/* program BoundedBuffer */

const int BufferSize = /* buffer size */;
semaphore s = 1, n = 0, e = BufferSize;

void producer()
{

while (true) {
 produce();

 wait(e);
 wait(s);
 append();
 signal(s);
 signal(n);
}

}

void consumer()
{

while (true) {
 wait(n);
 wait(s);
 take();
 signal(s);
 signal(e);
 consume();
}

}

void main()
{

parbegin (producer, consumer);
}

The above program gives the perfect solution to the producer-consumer
problem with bounded buffer using semaphores. As with the definition, wait() and
signal() functions protect the CS by decrementing and incrementing the semaphore
values. The semaphore „s‟ is a binary semaphore that takes care of either produce or
a consumer being active at a time in the buffer while „e‟ and „SizeBuffer‟ are the
counting semaphores which see to that neither producer nor consumer gets involved
in busy waiting.

Q. Give Solution to sleeping Barber’s problem using semaphores.
In computer science, the sleeping barber problem is a classic inter-process
communication and synchronization problem between multiple operating system
processes. The problem is analogous to that of keeping a barber working when there
are customers, resting when there are none and doing so in an orderly manner.

A multiple sleeping barbers problem has the additional complexity of coordinating
several barbers among the waiting customers.

These three are mutexes (only 0 or 1 possible)

Semaphore custReady = 0 # if 1, at least one customer

is ready

Semaphore barberReady = 0

Semaphore accessWRSeats = 1

int numberOfFreeWRSeats = N

def Barber():

 while true: # Run in an infinite loop.

{

 # Try to acquire a customer - if none is available, go to

sleep.

 wait(custReady);

Awake - try to get access to modify # of available seats,

otherwise sleep.

 wait(accessWRSeats);

 numberOfFreeWRSeats++ ; # One waiting room chair

becomes free.

 signal(barberReady); # I am ready to cut.

 signal(accessWRSeats); # Don't need lock on the chairs

anymore

 # (Cut hair here.)

}

def Customer():

{

while true: # Run in an infinite loop.

Try to get access to the waiting room chairs.

 wait(accessWRSeats);

 if numberOfFreeWRSeats > 0: # If there are any free seats:

 numberOfFreeWRSeats-- # sit down in a chair

 signal(custReady) #notify the barber waiting for

customer

 signal(accessWRSeats) # don't need to lock the

chairs anymore

 wait(barberReady) # wait until the barber is

ready

 # (Have hair cut here.)

 else: # otherwise, there are no free

seats;

 tough luck --

 signal(accessWRSeats) # don't forget to release the

seat lock

 # (Leave without a haircut.)

}

Q. Give a solution to Reader-Writers problem using Monitors.

Monitors can be used to restrict access to the database. In this example, the read
and write functions used by processes which access the database are in a monitor
called ReadersWriters. If a process wants to write to the database, it must call the
writeDatabase function. If a process wants to read from the database, it must call the
readDatabase function.

Here the monitor is using the primitives Wait and Signal to put processes to sleep
and to wake them up again. In writeDatabase, the calling process will be put to sleep
if the number of reading processes, stored in the variable count, is not zero. Upon
exiting the readDatabase function, reading processes check to see if they should
wake up a sleeping writing process.

 monitor ReadersWriters
 condition OKtoWrite, OKtoRead;
 int ReaderCount = 0;
 Boolean busy = false;

 procedure StartRead()
 {
 if (busy) // if database is not free, block
 OKtoRead.wait;
 ReaderCount++; // increment reader ReaderCount
 OKtoRead.signal();

 }

 procedure EndRead()
 {
 ReaderCount-- ; // decrement reader ReaderCount
 if (ReaderCount == 0)
 OKtoWrite.signal();
 }

 procedure StartWrite()
 {
 if (busy || ReaderCount != 0)
 OKtoWrite.wait();
 busy = true;
 }

 procedure EndWrite()
 {
 busy = false;
 If (OKtoRead.Queue)
 OKtoRead.signal();
 else
 OKtoWrite.signal();
 }

 Reader()
 {

 while (TRUE) // loop forever
 {
 ReadersWriters.StartRead();
 readDatabase(); // call readDatabase function in
monitor
 ReadersWriters.EndRead();
 }
 }

 Writer()
 {
 while (TRUE) // loop forever
 {
 make_data(&info); // create data to write
 ReaderWriters.StartWrite();
 writeDatabase(); //call writeDatabase monitor function
 ReadersWriters.EndWrite();
 }
 }

Q. Give solution to Producer-Consumer Problem using monitors

Monitors make solving the producer-consumer a little easier. Mutual exclusion
is achieved by placing the critical section of a program inside a monitor. In the code
below, the critical sections of the producer and consumer are inside the monitor
ProducerConsumer. Once inside the monitor, a process is blocked by the Wait and
Signal primitives if it cannot continue.

 monitor ProducerConsumer
 condition full, empty;
 int count;

 procedure enter();
 {
 if (count == N) wait(full); //block if buffer
full,
 put_item(widget); // put item in buffer
 count = count + 1; // increment count of full
slots
 if (count == 1)
 signal(empty); //awake consumer
 }

 procedure remove();
 {
 if (count == 0) wait(empty); // block if buffer
empty
 remove_item(widget); // remove item from
buffer
 count = count - 1; // decrement count of full
slots

 if (count == N-1)
 signal(full); // wakeup producer

 }

 count = 0;
 end monitor;

 Producer();
 {
 while (TRUE)
 {
 make_item(widget); // make a new item
 ProducerConsumer.enter; // call monitor function
enter
 }
 }

 Consumer();
 {
 while (TRUE)
 {
 ProducerConsumer.remove; //call monitor function
remove
 consume_item; // consume an item
 }
 }

Q. Give solution to the Bounded-Buffer Producer/Consumer Problem Using
Message Passing.
Ans:
const int capacity = /* buffering capacity */ ;
null = /* empty message */ ;
int i;
void producer()
{ message pmsg;
while (true) {
receive (mayproduce,pmsg);
pmsg = produce();
send (mayconsume,pmsg);
}
}
void consumer()
{ message cmsg;
while (true) {
receive (mayconsume,cmsg);
consume (cmsg);
send (mayproduce,null);
}
}

void main()
{
create_mailbox (mayproduce);
create_mailbox (mayconsume);
for (int i = 1;i <= capacity;i++) send (mayproduce,null);
parbegin (producer,consumer);

}

8. Multiple Choice Questions

Q. what does IPC achieves………………
1. Coordination between computations spread over several processes.
2. Mutual exclusion for the processes competing for resources
3. Command interpretation for the user
4. Deadlock avoidance
Ans. 1

Q. A process is said to be starved
1 if it is permanently waiting for a resource
2 if semaphores are not used
3 if a queue is not used for scheduling
4 if demand paging is not properly implemented
 Ans) 1

Q. Situations where two or more processes are reading or writing some
shared data and the final results depend on the order of usage of the shared
data, are called ________.
1 Race conditions
2 Critical section
3 Mutual exclusion
4 Dead locks
 Ans) 1

Q. The solution to Critical Section Problem is : Mutual Exclusion, Progress and
Bounded Waiting.
1 The statement is false
2 The statement is true.
3 The statement is contradictory.
4 None of the above
 Ans) 2

Q. A critical region is defined as
1 is a piece of code which only one process executes at a time
2 is a region prone to deadlock
3 is a piece of code which only a finite number of processes execute
4 is found only in Windows NT operation system
 Ans) 1

Q. ______ is a high level abstraction over Semaphore.
1 Shared memory
2 Message passing
3 Monitor
4 Mutual exclusion
 Ans) 3

Q. A binary semaphore
1 has the values one or zero

2 is essential to binary computers
3 is used only for synchronization
4 is used only for mutual exclusion
 Ans) 1

Q. The Purpose of Co-operating Process is __________.
1 Information Sharing
2 Convenience
3 Computation Speed-Up
4 All of the above
 Ans) 4

Q. Mutual exclusion
1 if one process is in a critical region others are excluded
2 prevents deadlock
3 requires semaphores to implement
4 is found only in the Windows NT operating system
Ans) 1

Q. The section of code which accesses shared variables is called as
__________.
1 Critical section
2 Block
3 Procedure
4 Semaphore
Ans) 1

Q. Semaphore can be used for solving __________.
1 Wait & signal
2 Deadlock
3 Synchronization
4 Priority
Ans) 3

Q. A binary semaphore
1 has the values one or zero
2 is essential to binary computers
3 is used only for synchronisation
4 is used only for mutual exclusion
Ans) 1

Q. Inter process communication can be done through __________.
1 Mails
2 Messages
3 System calls
4 Traps
Ans) 2

Q. Mutual exclusion
1 if one process is in a critical region others are excluded

2 prevents deadlock
3 requires semaphores to implement
4 is found only in the Windows NT operating system
Ans) 1

Q. The section of code which accesses shared variables is called as
__________.
1 Critical section
2 Block
3 Procedure
4 Semaphore
Ans) 1

 Q. a strong semaphore is
1 one that follows FIFO policy for unblocking the processes waiting for this
semaphore
2 one that cannot ever be preempted
3 one that is initialized to some higher value
4 one with the highest priority
Ans) 1

Q. a weak semaphore
1 one that follows no policy for unblocking the processes waiting for this semaphore
2 one that always gets preempted
3 one that is initialized to either 0 or 1
4 one with the lowest priority
Ans) 1

