Verifying the Fundamental Trigonometric Identities

Pythagorean Identities

$$\sin^2\theta + \cos^2\theta = 1 \qquad 1 + \cot^2\theta = \csc^2\theta \qquad 1 + \tan^2\theta = \sec^2\theta$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin^2\theta + \cos^2\theta = 1$$

Prove:
$$1 + \cot^2 \theta = \csc^2 \theta$$

Prove $1 + \tan^2 \theta = \sec^2 \theta$

Even-Odd Identities

$$\sin(-\theta) = -\sin \theta$$
$$\csc(-\theta) = -\csc \theta$$

$$\cos(-\theta) = \cos \theta$$

$$\sec(-\theta) = \sec \theta$$

$$\tan(-\theta) = -\tan \theta$$

$$\cot(-\theta) = -\cot \theta$$

Lecture notes developed under creative commons license using OpenStax Algebra and Trigonometry, Algebra and Trigonometry. OpenStax CNX. May 18, 2016 http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@5.241

Reciprocal Identities

$$\sin \theta = \frac{1}{\csc \theta}$$

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\cos \theta = \frac{1}{\sec \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

HOW TO

Given a trigonometric identity, verify that it is true.

- 1. Work on one side of the equation. It is usually better to start with the more complex side, as it is easier to simplify than to build.
- 2. Look for opportunities to factor expressions, square a binomial, or add fractions.
- 3. Noting which functions are in the final expression, look for opportunities to use the identities and make the proper substitutions.
- 4. If these steps do not yield the desired result, try converting all terms to sines and cosines.

Examples

Verify $\tan \theta \cos \theta = \sin \theta$.

Verify the identity $\csc \theta \cos \theta \tan \theta = 1$.

Verify the following equivalency using the even-odd identities:

$$(1 + \sin x) [1 + \sin (-x)] = \cos^2 x$$

Verify the identity
$$\frac{\sec^2\theta - 1}{\sec^2\theta} = \sin^2\theta$$

Show that $\frac{\cot \theta}{\csc \theta} = \cos \theta$.

Create an identity for the expression 2 $\tan \theta \sec \theta$ by rewriting strictly in terms of sine.

Verify

$$\frac{\sin^2(-\theta) - \cos^2(-\theta)}{\sin(-\theta) - \cos(-\theta)} = \cos \theta - \sin \theta$$

Verify

$$\frac{\sin^2\theta - 1}{\tan\theta\sin\theta - \tan\theta} = \frac{\sin\theta + 1}{\tan\theta}.$$

Verify the identity: $(1 - \cos^2 x) (1 + \cot^2 x) = 1$.

Using Algebra (Factoring) to Simplify Trigonometric Expressions

Write the following trigonometric expression as an algebraic expression: $2\cos^2\theta + \cos\theta - 1$.

Rewrite the trigonometric expression using the difference of squares: $4\cos^2\theta - 1$.

Simplify the expression by rewriting and using identities:

$$\csc^2\theta - \cot^2\theta$$

Use algebraic techniques to verify the identity: $\frac{\cos\,\theta}{1+\sin\,\theta}=\frac{1-\sin\,\theta}{\cos\,\theta}.$