8.2 - Graphs and Other Trig Functions

Analyzing the Graph of $y = \tan x$

$$\tan x = \frac{\sin x}{\cos x}$$

Х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin (x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cos (x)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tan (x)									

A GENERAL NOTE LABEL: FEATURES OF THE GRAPH OF Y = ATAN(BX)

- The stretching factor is |A|.
- The period is $P = \frac{\pi}{|B|}$.
- The domain is all real numbers x, where $x \neq \frac{\pi}{2|B|} + \frac{\pi}{|B|}k$ such that k is an integer.
- The range is $(-\infty, \infty)$.
- The asymptotes occur at $x=\frac{\pi}{2|B|}+\frac{\pi}{|B|}k$, where k is an integer.
- $y = A \tan(Bx)$ is an odd function.

Graphing Variations of $y = \tan x$

HOW TO FEATURE

Given the function $f(x) = A \tan(Bx)$, graph one period.

- 1. Identify the stretching factor, |A|.
- 2. Identify B and determine the period, $P = \frac{\pi}{|B|}$.
- 3. Draw vertical asymptotes at $x = -\frac{P}{2}$ and $x = \frac{P}{2}$.
- 4. For A > 0, the graph approaches the left asymptote at negative output values and the right asymptote at positive output values (reverse for A < 0).
- 5. Plot reference points at $\left(\frac{P}{4},A\right)$, (0,0), and $\left(-\frac{P}{4},-A\right)$, and draw the graph through these points.

Examples

Sketch a graph of
$$f(x) = 3 \tan \left(\frac{\pi}{6}x\right)$$

Graphing One Period of a Shifted Tangent Function

A GENERAL NOTE LABEL: FEATURES OF THE GRAPH OF Y = ATAN(BX-C)+D HOW TO FEATURE

- The stretching factor is |A|.
- The period is $\frac{\pi}{|R|}$.
- The domain is $x \neq \frac{C}{B} + \frac{\pi}{|B|}k$, where k is an integer.
- The range is $(-\infty, -|A|] \cup [|A|, \infty)$.
- The vertical asymptotes occur at $x = \frac{C}{B} + \frac{\pi}{2|B|}k$, where k is an odd integer.
- There is no amplitude.
- y = A tan(Bx) is and odd function because it is the qoutient of odd and even functions(sin and cosine perspectively).

Given the function $y = A \tan(Bx - C) + D$, sketch the graph of one period.

- 1. Express the function given in the form $y = A \tan(Bx C) + D$.
- 2. Identify the stretching/compressing factor, |A|.
- 3. Identify B and determine the period, $P=\frac{\pi}{|B|}$.
- 4. Identify C and determine the phase shift, $\frac{C}{R}$.
- 5. Draw the graph of $y = A \tan(Bx)$ shifted to the right by $\frac{C}{B}$ and up by D.
- 6. Sketch the vertical asymptotes, which occur at $x = \frac{C}{B} + \frac{\pi}{2|B|}k$, where k is an odd integer.
- 7. Plot any three reference points and draw the graph through these points.

Graph one period of the function $y = -2 \tan(\pi x + \pi) - 1$

HOW TO FEATURE

Given the graph of a tangent function, identify horizontal and vertical stretches.

- 1. Find the period P from the spacing between successive vertical asymptotes or x-intercepts.
- 2. Write $f(x) = A \tan\left(\frac{\pi}{P}x\right)$.
- 3. Determine a convenient point (x, f(x)) on the given graph and use it to determine A.

Example

Find a formula for the function in Figure.

Analyzing the Graph of $y = \sec x$ and $y = \csc x$

$$\sec x = \frac{1}{\cos x}$$

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
cos (x)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
sec (x)									

A GENERAL NOTE LABEL: FEATURES OF THE GRAPH OF Y = ASEC(BX)

- ullet The stretching factor is AI.
- The period is $\frac{2\pi}{|B|}$.
- The domain is $x \neq \frac{\pi}{2|B|}k$, where k is an odd integer.
- The range is $(-\infty, -|A|] \cup [|A|, \infty)$.
- The vertical asymptotes occur at $x = \frac{\pi}{2|B|}k$, where k is an odd integer.
- There is no amplitude.
- $y = A \sec(Bx)$ is an even function because cosine is an even function.

000	v	_	1		
CSC	л		$\sin x$		

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin (x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
csc (x)				_					

A GENERAL NOTE LABEL: FEATURES OF THE GRAPH OF Y = ACSC(BX)

- \bullet The stretching factor is $\mathsf{I}\!A\mathsf{I}$.
- The period is $\frac{2\pi}{|B|}$.
- The domain is $x \neq \frac{\pi}{|B|}k$, where k is an integer.
- The range is $(-\infty, -|A|] \cup [|A|, \infty)$.
- The asymptotes occur at $x = \frac{\pi}{|B|}k$, where k is an integer.
- $y = A \csc(Bx)$ is an odd function because sine is an odd function.

Graphing Variations of $y = \sec x$

A GENERAL NOTE LABEL: FEATURES OF THE GRAPH OF Y = ASEC(BX-C)+D

- ullet The stretching factor is |A|.
- The period is $\frac{2\pi}{|R|}$.
- The domain is $x \neq \frac{C}{B} + \frac{\pi}{2|B|}k$, where k is an odd integer.
- The range is $(-\infty, -|A|] \cup [|A|, \infty)$.
- The vertical asymptotes occur at $x = \frac{C}{B} + \frac{\pi}{2|B|}k$, where k is an odd integer.
- There is no amplitude.
- $y = A \sec(Bx)$ is an even function because cosine is an even function.

HOW TO FEATURE

Given a function of the form $f(x) = A \sec(Bx - C) + D$, graph one period.

- 1. Express the function given in the form $y = A \sec(Bx C) + D$.
- 2. Identify the stretching/compressing factor, |A|.
- 3. Identify B and determine the period, $\frac{2\pi}{|B|}$.
- 4. Identify C and determine the phase shift, $\frac{C}{B}$.
- 5. Draw the graph of $y = A \sec(Bx)$.but shift it to the right by $\frac{C}{B}$ and up by D.
- 6. Sketch the vertical asymptotes, which occur at $x = \frac{C}{B} + \frac{\pi}{2|B|}k$, where k is an odd integer.

Example

Graph one period of $f(x) = -6 \sec(4x + 2) - 8$.

Graphing Variations of $y = \csc x$

A GENERAL NOTE LABEL: FEATURES OF THE GRAPH OF Y = ACSC(BX-C)+D

- The stretching factor is |A|.
- The period is $\frac{2\pi}{|R|}$.
- The domain is $x \neq \frac{C}{B} + \frac{\pi}{2|B|}k$, where k is an integer.
- The range is $(-\infty, -|A|] \cup [|A|, \infty)$.
- The vertical asymptotes occur at $x = \frac{C}{B} + \frac{\pi}{|B|} k$, where k is an integer.
- There is no amplitude.
- $y = A \csc(Bx)$ is an odd function because sine is an odd function.

HOW TO FEATURE

Given a function of the form $f(x) = A \csc(Bx - C) + D$, graph one period.

- 1. Express the function given in the form $y = A \csc(Bx C) + D$.
- 2. Identify the stretching/compressing factor, |A|.
- 3. Identify B and determine the period, $\frac{2\pi}{|B|}$.
- 4. Identify C and determine the phase shift, $\frac{C}{R}$.
- 5. Draw the graph of $y = A \csc(Bx)$ but shift it to the right by and up by D.
- 6. Sketch the vertical asymptotes, which occur at $x = \frac{C}{B} + \frac{\pi}{|B|}k$, where k is an integer.

Example

Sketch a graph of $y = 2\csc\left(\frac{\pi}{2}x\right) + 1$. What are the domain and range of this function?

Analyzing the Graph of $y=\cot x$

$$\cot x = \frac{1}{\tan x}.$$

	1			_					
X	0	π	π	π	π	2π	3π	5π	π
		6	$\frac{\overline{4}}{4}$	3	2	2			
				4		J 1	4_	0_	
cos (x)	1	$\sqrt{3}$	$\sqrt{2}$	1	0	1	$\sqrt{2}$	$\sqrt{3}$	-1
. ,		<u> </u>	<u> </u>	-		- -	_ <u>-</u>	_	
		2	2	Z		Z	2	2	
sin (x)	0	1	1/2	$\sqrt{3}$	1	$\sqrt{3}$	1/2	1	0
3111 (X)		_	<u> </u>	<u>γ 3</u>	_	<u> </u>	<u> </u>	_	O
		2	2	2		2	2	2	
cot (x)							_		
cot (x)									
	I	I	l .	I			I	l	

A GENERAL NOTE LABEL: FEATURES OF THE GRAPH OF Y = ACOT(BX)

- ullet The stretching factor is |A|.
- The period is $P = \frac{\pi}{|B|}$.
- The domain is $x \neq \frac{\pi}{|B|}k$, where k is an integer.
- The range is $(-\infty, \infty)$.
- The asymptotes occur at $x = \frac{\pi}{|B|}k$, where k is an integer.
- $y = A \cot(Bx)$ is an odd function.

Graphing Variations of $y = \cot x$

A GENERAL NOTE LABEL: PROPERTIES OF THE GRAPH OF Y = ACOT(BX-C)+D

- The stretching factor is |A|.
- The period is $\frac{\pi}{|R|}$.
- The domain is $x \neq \frac{C}{B} + \frac{\pi}{|B|}k$, where k is an integer.
- The range is $(-\infty, -|A|] \cup [|A|, \infty)$.
- The vertical asymptotes occur at $x=\frac{C}{B}+\frac{\pi}{|B|}k$, where k is an integer.
- There is no amplitude.
- $y = A \cot(Bx)$ is an odd function because it is the quotient of even and odd functions (cosine and sine, respectively)

HOW TO FEATURE

Given a modified cotangent function of the form $f(x) = A \cot(Bx - C) + D$, graph one period.

- 1. Express the function in the form $f(x) = A \cot(Bx C) + D$.
- 2. Identify the stretching factor, |A|.
- 3. Identify the period, $P = \frac{\pi}{|B|}$.
- 4. Identify the phase shift, $\frac{C}{R}$.
- 5. Draw the graph of $y = A \tan(Bx)$ shifted to the right by $\frac{C}{B}$ and up by D.
- 6. Sketch the asymptotes $x = \frac{C}{B} + \frac{\pi}{|B|}k$, where k is an integer.
- 7. Plot any three reference points and draw the graph through these points.

Example

Sketch a graph of one period of the function $f(x) = 4\cot\left(\frac{\pi}{8}x - \frac{\pi}{2}\right) - 2$.

