

 Process

A. Basic Terminology & Definitions
Task, program, process, thread, job, process state, process state transitions,

process scheduling, process context, process mode, event, ready queue,

blocked queue, suspended queue, resource, degree of multiprogramming,

process priority, I/O scheduling, preemption, preemptive, nonpreemptive,

multithreading

B. State Transition Models And Process Life Cycles
User mode, kernel mode, Two state model, five state model, seven state

model, eleven state model, Phases in and reasons of Process creation,

suspension, termination

C. Process Management
PCB, Process image, mode switch Vs context switch

D. Threads
Thread management, ULT, KLT, process switch Vs thread switch,

E. System Calls For Process Management
Fork, kill, signal, exec, wait, exit, getpid, getppid, nice, brk

F. Process scheduling
Types of schedulers: Mid-term-short term-long term schedulers, response

time, waiting time, turnaround time, scheduling policies, uniprocessor

scheduling, multiprocessor scheduling, real time scheduling, UNIX

scheduling, LINUX scheduling, Comparative assessment of scheduling

G. Processes in Unix, Solaris and windows 2000 thread and SMP
Management.

H. Multiple Choice Questions

Basic Terminology & Definitions

Q. 1 Define Task, program, process, thread and job with an example of each.
Ans:

 Task: Task is a unit of assigned work. It can also be defined as the unit of
programming controlled by OS. Depending on the OS design the task may
involve one or more processes.
Example: Bake a cake

 Program: A program is defined as sequence of instruction written to
accomplish a task. A program may comprise of one or more processes
depending on the statement being executed. Generally referred as a passive
entity that does not perform any action.
Example: A particular recipe given in book.

 Process: This is an instance of program in execution. The static statements in
the program when executed, take the process form. In contrast to the
program, a process is an active entity which needs a set of resources to
perform its function. The Linux kernel internally represents processes as
tasks. A process elements are: a program, data and process state.
Example: actually following the steps given the book.

 Thread: A thread is a lightweight process. It is also defined as the smallest
processing unit that is scheduled by an operating system.
 A thread must be part of a process as it shares the process
environment viz, code, data and resources with other threads. Threading
concept has increased the computing efficiency to significant extent.

 Job: A job is unit of work submitted by user to the system. A job may be
interactive or a batch job which may in turn consist of one or more processes.

Q.2 Define process states, process context, process mode, event, degree of

multiprogramming, process priority, preemption, preemptive, nonpreemptive,

Multithreading.

Ans:

 Process State: A process state is a process’ internal data maintained by OS
for the purpose of supervision and control of the process. It is also called as
executional context of the process.

 Process Context: whenever a running process is taken away from
processor, some of the process state’s information needs to be retained. This
information called as process context helps the process to resume from the
point where it was stopped last time.

The context of a process includes its address space, stack space,

virtual address space, register set image i.e. Program Counter, Stack Pointer,

Program Status Word, Instruction Register and other general processor

registers, accounting information, associated kernel data structures and

current state of the process (waiting, ready, etc).

 Process Mode: the operational or the privilege mode of process execution is
called process mode. A process executes in user mode or a kernel mode.
Processor switches the process in between these modes depending on the
code the process is running.

 Event: An activity that is happens or is expected to happen. Generally this a
software message exchanged when the activity occurs. In operating systems,
the events may cause the processes to change their state.
e.g. mouse click, file lock reset, etc.

 Degree Of Multiprogramming: with multiprogramming, the CPU can run
multiple programs simultaneously or concurrently. The degree of
multiprogramming is the maximum number of allowed processes at a time in
a system that does not let the CPU performance degrade than a certain
threshold. The long term scheduler can limit this number so that all the
admitted processes get fair CPU share and they all execute well.

 Process priority: In a multiprogramming system, the processes are assigned
numerical privileged values indicating their relative importance and/or urgency
and/or value.

 Preemption: Preemption is the ability of the system to take over a currently
executing process by another one (possibly with high privileged one) with an
intention to resume the preempted process later on.

 Preemptive: Preemptive entities are the one those can be taken over by
another similar type of entities.

 Non-preemptive: Non-preemptive entities are the one those cannot be taken
over by other entities.

 Multithreading: Multithreading is defined as the ability of an OS to support
multiple, concurrent paths of execution within a single process.
The thread process relationship is shown in following diagram

One thread of execution; one process One process may have more than one thread

Multiple processes in system;
only one thread of execution per process

Multiple processes in system;
Multiple threads of execution per process

Figure: Threads and process association.

Q.3 Define Process State Transitions, Process Scheduler, I/O Scheduling,
Processor Scheduling, Ready Queue, Blocked Queue, Suspended Queue.

 Process State Transition Diagram: A process transits among various
states from its initiation to termination. The pictorial representation of this
changes in states is called as process state transition diagram.

 Process Scheduler: Process scheduler or the Dispatcher is a software
module that works for CPU(processor) scheduling and chooses the next
process to run. Its main activities involve switching the process context,
switching the execution mode to user. The dispatcher is required to work very
fast to improve the efficiency of execution.

 I/O Scheduling: I/O scheduling is a process that is involved in making the
decision as to which process’s pending I/O request should be handled by an
available I/O device.

 Processor Scheduling: Processor scheduling is a process that makes a
decision of which process should get hold of processor next. This process
needs the ‘dispatcher’ – a software module of short term scheduler to make
this decision.

 Ready Queue: Ready Queue is a data structure that holds the processes
which have acquired all required resources for the execution except CPU and
are ready to run.

Any process submitted for execution undergoes many states during its
lifetime. In certain states, only one process can have that state at any time of
instance, while in some states multiple processes are allowed at a time. Such
processes are stored in data structure ‘Queue’.

 Blocked Queue: Blocked queue is a data structure that holds the processes
which were executing and now waiting for some event to occur. Unless
specified by priority, these processes are removed from this queue on FIFO
basis as and when the corresponding events occur.

 Suspended Queue: Suspended queue is a data structure that holds the
processes which were blocked and are swapped out to secondary memory to
make room for processes which are getting blocked newly.

Unless specified by priority, these processes are removed from this
queue on FIFO basis as and when the corresponding events occur. After
removal, processes may go to Blocked queue if memory is available but event
is still awaited else, they may be shifted to Ready-Suspended state which
indicates that event has occurred but memory isn’t available.

Q.4 what are the I/O bound and CPU bound processes?
Ans.

I/O bound process: I/O bound processes are the ones those spend more time
doing I/O operations than computation, though it may have many short CPU bursts.

CPU bound processes: CPU bound processes spend more time in computations
and so they have long CPU bursts. Although they may also involve in very short
durations of I/O operations.

Q. 5 Differentiate between parallelism and concurrency.
Ans.

Parallelism: Parallelism is the quality of the processes to execute at the same time.
Two processes or events are said to be parallel if they occur at the same time. In
parallelism, multiple processes can be active at a time.

Concurrency: Concurrency does not mean parallel. With concurrency, multiple
processes are executed one after another by interleaving their execution in such a
way that it creates an illusion of parallelism. In concurrency only one process can be
active at a time.
 Generally the concurrency is achieved by interleaving process execution on
(may be single) CPU which creates an illusion that processes run in parallel, while
parallelism is obtained by multiple processors operating in parallel at a time. Both the
techniques achieve computation speedup, though the inherent mechanism used by
both concepts is different.

Q. 6. State advantages of process concurrency.
Ans.

The processes in a multiprogramming environment are a blend of I/O bound
and CPU bound processes. If these processes are executed sequentially, they
underutilize the CPU and I/O devices both. If executed in interleaved fashion, the
system gives better efficiency, relatively lower response, turn around and waiting
times.
Example: consider three processes A,B and C with different requirements of
resources and execution times. The following diagram shows the effect when they
are executed in interleaved and non-interleaved mode.

 C

 B

 A

Processes

 Figure: Non-interleaved execution of processes Time

 C

CPU

execution

 B

 I/O

execution

 A

Processes

Time

Figure: Interleaved process execution

Q. 7 What are the basic elements of a process?
Ans:
A process is comprised of six components as,

1. Process ID: This is a unique identifier assigned to the process
2. Code: This is program code.
3. Data : These are the data and files required for execution
4. Resources : These are different types of resources allocated by OS
5. Stack: This contains parameters for the functions/procedures called and their

return addresses.
6. Process state: This is one of the eleven states process is in.

Q. 8. What are the elements of process environment?
Ans.
The components of process environment are program code and data,
memory allocation information, status of the file processing activities,
information about the process interaction, information about the resources
required for process execution and some miscellaneous information needed
by the OS. These elements can be detailed as,

 Program code and data: This includes the program code including all
the functions and procedures, and the program data, including the
stack information.

 Memory allocation information: This section has information of the
memory areas allocated to process. This proves to be the vital
information as it is required to manage the memory accesses by
concurrent processes.

 Status of file processing activities: This holds the pointers to files
opened by process and the current positions in the respective files.

 Process interaction information: This holds information necessary to
manage interprocess communication through signals and messages,
and the IDs of child-parent processes.

 Resource information: The resource information of the resources
acquired by process is stored.

 Miscellaneous information : miscellaneous information needed for a
process to communicate with OS is maintained as part of process
environment.

Q. 8 What are the fundamental kernel functions of process control?
Ans
The kernel does three main functions to control the processes in hand as
given below,

1. Scheduling: Choose the process as per the scheduling policy to be
executed next on the CPU.

2. Dispatching: Set up execution of the chosen process on the CPU.
3. Context save: Save information concerning an executing process when

its execution gets suspended.

Figure: Fundamental functions to control processes

Here in the diagram, occurrence of the event calls the context save
functionality and an appropriate event handling procedure. This event
handling may initiate some processes, hence the scheduling function
gets invoked to choose the process and in turn, the dispatching
function transfers control to the new process.

Q. 9. Define and explain the concept: process state transition.
Ans:

Definition: A state transition for process is defined as a change in its
state.
The state transition occurs in response to some event in the computing
system. E.g. transition from ready state to running when dispatched by
scheduler.

State Transition Models and Process Life
Cycles

Q. 1. List and explain different states in process state-transition diagram
Ans. The different possible states in a complete state transition diagram are: new,
ready, running, suspended, blocked, terminated, etc.

 New: The process is being created

 Ready: the process is ready with all required resources and waiting to be
assigned to a processor

 Waiting/Blocked: the process is waiting for some event to occur

 Suspended: the process was waiting for some event to occur, but then is
swapped to secondary memory to make room for new processes getting
‘blocked’.

 Terminated: the process has finished its execution.

Q. 2. Explain the two-state process model.
Ans:

A

B.

Figure A and B: Two State Model

In two process model, the process is in either of the states, Running or Not
Running. A newly created process gets its PCB and enter the system in the
Not Running state. It acquires all resources required for its execution and
waits for its turn to execute. The dispatcher keeps on interrupting the Running
process time to time and selects the other deserving processes to run. Then
the Running process is moves to Not Running state and the other selected
process transits from Not Running to Running state. The Not Running

processes can be more than one in number and they must be processed in
some order. Hence, they are stored in an ordered queue.

Q. 3. Explain the five state process model with the transitions
Ans.

Figure: Five-State state transition diagram

The diagram above depicts the simple life cycle of the process. The state

transitions can further be explained as,

State transition Description

Null New A new process is created to execute a
program.

New ready The OS may move a process from New
to Ready state depending on the
predefined maximum number of
processes allowed (Degree of
multiprogramming).

Ready Running The process is scheduled by dispatcher.
The CPU starts or resumes execution of
the instruction codes

Blocked  Ready The request initiated by process is
satisfied or the event on which it is
waiting occurs.

Running  Ready The process is preempted by the OS
decides to execute some other process.
This transition takes place may be
because of expiration of time quantum or
arrival of high priority process.

Running  Blocked The running process makes request for
resource(s) or needs some event to
occur to proceed further. The process
then calls for a system call to indicate its
wish to wait till the resource or the event
becomes available.

Running  Termination The program execution is completed or
terminated.

Q. 4. What are the causes of process initiation?
Ans:
The main reasons for process creation are: New batch job initiation,
Interactive logon, Initiation by OS to provide some service or creation by
some other process.
New batch job: while processing the new batch of jobs submitted, the OS
creates a process to execute the same.
Interactive logon: when a user logs into the system, a new process is
created.
Created by OS to provide some service: The OS initiates a process to
perform the service requested by user directly or indirectly, without making
the user to wait.
Spawned by an existing process: To support Modularity and/or
parallelism, a user program can create some number of new processes.

Q. 5. What are the causes of process blocking?
Ans: The five major reasons of process blocking are:

 Process requests an I/O operation

 Process requests memory or some other resource

 Process wishes to wait for a specific interval of time

 Process waits for message from some other process

 Process wishes to wait for some action to be performed by
another process.

Q. 6. What are the causes of process termination?

Ans:
The main reasons of process termination can be listed as,

 Normal Completion: The process executes an OS system call to
intimate that it has completed its execution.

 Self termination (e.g. incorrect file access privileges, inconsistent
data)

 Termination by the parent process: a parent process calls a system
call to kill/terminate its child process when the execution of child
process is no longer necessary.

 Exceeding resource utilization: An OS may terminate a process if it
is holding resources more than it is allowed to. This step can also be
taken as part of deadlock recovery procedure.

 Abnormal conditions during execution: the OS may terminate a
process if an abnormal condition occurs during the program execution.
(e.g. memory protection violation, arithmetic overflow etc)

 Deadlock detection and recovery.

Q. 7. Draw and explain nine state state-transition diagram.
Ans.

Preempted

User
Running

Kernel
Running

Zombie

Ready to
run in

memory

Asleep in
memory

Ready to
run;

swapped

Created

Asleep;
swapped

Return to
user

Return

System
call,
interrupt

Interrupt,
interrupt
return exit

sleep

preempt

Reschedule
process

Enough
Memory

Not Enough
Memory

Swap out

Swap in

Wakeup Wakeup

Swap out

Fork

Figure: Nine-state/ UNIX process state transition diagram

UNIX operating system clearly specifies the two modes of execution:

user mode, kernel mode. The process gets created on execution for the
system call fork(). All the states shown above can be detailed as given in the
table below.

Process State Description

User Running The process is running in user mode

Kernel Running The process is running in Kernel mode

Ready to Run, in
Memory

The process is ready to run as soon as the kernel
dispatches it.

Asleep in Memory The process is blocked on some event, process is in
main memory.

Ready to Run,
Swapped

The process is ready to run, but the swapping module
must swap it in the main memory, so that kernel can
schedule it.

Sleeping, swapped The process is blocked on some event and it is in
secondary memory.

Preempted The process was returning from kernel mode to user
mode, but the kernel preempts it and performs a
process switch to dispatch another process.

Created The process is just created and is not yet ready to
run. (may not have all the resources, including
memory, which are required to run)

Zombie The process no longer exists, but it leaves some
information (probably accounting information) to its
parent process to collect.

Q. 8. What are the events pertaining to a Process?
Ans: The processes wait on some events to execute to complete their
execution. Though not complete, some of the events can be listed as follows,

1. Process creation event: a new process gets created
2. Process termination event: a process completes its execution.
3. Timer event: occurrence of timer interrupt
4. Resource request event: a resource request is made by a process
5. Resource release event: process releases a resource and notifies.
6. I/O initiation request event: a process wishes to intiate I/O operation
7. I/O completion event: a process finishes I/O operation
8. Message send event: A message is sent by one process to an another

one.
9. Message receive event: a process receives a massage by another one.
10. Signal send event: a signal is sent by a process to an another one
11. Signal receive event: a process receives a signal
12. A program interrupt: An instruction in currently executing process

executes some illegal operation and malfunctions.

Q. 9. What are the reasons of process suspension?
Ans:
The basic reasons of process suspension are: swapping, interactive user
request, timing, parent process request or some OS reason.
Swapping: The main memory may not be enough to accommodate some
ready process. So a currently not running process is shifted from main
memory to secondary memory.
Interactive User request: a user may wish to suspend a currently running
process for debugging or to manage the use of resources
Timing: A process may be executed on periodic basis and may be
suspended while waiting for its next turn of execution.
Parent process request: A parent process may wish to suspend its child
process to examine or modify the suspended process or to coordinate the
child processes.
Other OS reasons of suspension: The OS may suspend a background or
utility process or a process that is causing some problem in normal activities.

Process Management

Q. 1. How Operating System executes a program?
 Ans. Every program that is loaded for execution contains declarations of variables
and functions if any, statements which may or may not contain data explicitly. During
program execution, the instructions use values stored in data area and the stack to
perform the intended computation. Any process’ address space is formed by its
instructions, data and program stack. The OS first needs to allocate some memory to
accommodate this address space to realize process execution.

In simple programs the control flows between the main program and the
functions according to program logic. The OS treats it as a single program as it is not
aware of existence of functions. In such cases, the program execution constitutes a
single process (one-to-one relationship).

If the program is coded in a language that contains special features for
concurrent programming (e.g. JAVA), then during execution, the OS is informed to
execute some portions of the program concurrently. In such a case, one program
may have multiple processes (one-to-many relationship) or threads running on its
behalf.

Q. 2. What are the child processes? State the advantages of having

parent-child process relationships.
Ans. The Operating System creates a process when a program is submitted to it for
execution. Depending on the coding style used for writing the program this process
may create other processes while in execution. Such processes are called child
processes and the processes generating them are called the parent ones. These
child processes can also become parents and give birth to new level of child
processes.

Advantages of parent-child process relationship:

Sr
No.

Advantage Description

Q. 3. What are the different mechanism processes use to interact with

each other?
Ans. In a typical multiprogramming environment, the processes are required
to interact with each other. The basic mechanism can be listed as follows,

Sr
No

Interaction Mechanism Description

1 Data Sharing The processes interact with each other by
altering data values. If more than one processes
update the data the same time, they may leave

the shared in inconsistent state. So, shared data
items are protected against simultaneous access
to avoid such situation.

2 Message Passing In this mechanism, the processes exchange
information by sending messages to each other.

3 Synchronization In certain computing environments, the
processes are required to execute their actions
in some particular order. To help this happen,
the processes synchronize with each other to
maintain their relative timings and execute in the
desired sequence.

4 Signals The processes may wait for events to occur. It
can be intimated to processes through the
signaling mechanism.

Q. 4. What are the components associated with process switching?

Ans: Broadly, process switching has two components pertaining to overhead:
execution related overhead, resource use related overhead.

Execution related overhead: During process switching the context of
running process is saved and to that of the new process needs to be loaded.
This overhead is unavoidable in process switching.

Resource use related overhead: A process holds many resources required
for execution during its runtime. This resource information leads to large size
of process state information, which adds to the process switching overhead.

Q. 5. What are the different control structures maintained by OS to
manage processes?

Ans:
The operating system needs the universal information about the current status of

each process and resources in system. To have this information handy, OS
maintains tables of information about it each entity that system is managing.

Memory

Devices

Files

Drives

Memory Tables

I/O Tables

File Tables

Memory

Process 1

Process 2

….

Process N

….

Primary Process Table

Process
Image 1

Process
Image N

Figure: Operating system Control Structures

Memory Tables: Memory tables keep track of both main and secondary memory.
Active processes are stored in main memory and when required, they are moved to
secondary memory through the mechanism called ‘swapping’. The memory tables
maintain the following information:

 The main memory allocation to all processes in system

 The secondary memory allocation to all processes in system

 Shared memory regions in main and virtual memory and their attributes

 Miscellaneous information required to manage virtual memory.

I/O Tables: I/O tables keep track of I/O devices and channels in the computing
system. The I/O devices are also resources required by processes. So at any given
instance, I/O devices may be available or allocated to a particular process.

File Tables: File tables keeps track of all files, their locations on secondary memory,
their current statuses and other attributes such security, sharing, etc. Most of the
operating systems, this information is maintained by a module called File
Management System.

Process table: Process tables manage processes. They maintain information of
processes, their child process references, statuses, allocated resources, process
contexts, information required for process synchronization and so on. These pieces
of information are stored in process images.

Q. 1. What are the typical fields of a PCB?

Ans:
The Process Control Block contains all information pertaining to a process
that is used in controlling the process operation, resource information and
information needed for inter-process communication.

Sr
No

PCB Field Contents

 Identifiers

1 Process ID This is unique process ID assigned to it at the time
of creation

2 Child and Parent
IDs

The child and parent process IDs are required for
process synchronization

3 User Identifier The unique identifier associated with the user in
multiuser systems.

 Processor State Information

3 User Accessible
Registers

Every processor offers some general purpose
registers those are accessible to user. The number
of available registers differs with every processor
type.

4 Control and
Status registers

This field is also called PSW(Program Status Word)
which typically contains
Program counter (Contains the address of the
next instruction to be fetched), Condition codes
(Result of the most recent arithmetic or logical
operation), Status information(Includes interrupt
enabled/disabled flags, execution mode)

5 Stack Pointers Each process needs one or more LIFO stacks to
store parameters and return addresses in case of
procedure or system calls. The stack pointer points
to stack top.

 Process Control Information

6 Scheduling and
state information

This is information about process state, priority,
scheduling related information and event
information in case the concerned process is
waiting on that!

7 Data Structuring A process may linked to other processes in queue,
ring or some other structure. This information is
stored in data structuring field.

8 Interprocess
communication

The processes need various flags, messages and
signals be exchanged to interact with each other.
Some or all this information in stored in PCB.

9 Process Priority The priority is a numeric value, which may be
assigned to a process at the time of its creation.
Some priorities can be altered by user and some
change with process age, too.

10 Memory
Management

This field holds the pointer to segments or to the
page tables which describe portions of memory
assigned to the process.

11 Resource
ownership and
Utilization

All the resources or the number of instances of
resources assigned to process are described in this
field.

Figure: Fields of Process Control Block

Q. 6. What the typical contents of a process image?

Ans:
The collection of program, stack, data and process attributes are called
process image. The process image is generally maintained as a continuous or
contiguous block of memory which resides in secondary memory. To execute
a process, its process image is loaded in main memory or virtual memory.
Typical elements of process image

Sr
No

Process image
element

Description

1 User Stack This is part of user space that contains program
data, a user stack area, and modifiable/editable
programs.

2 User Program The program under execution.

3 Stack Each process needs one or more LIFO stacks to
store parameters and return addresses in case of
procedure or system calls.

4 Process
Control Block

Process control block(PCB) contains the data which
is used by OS to control and manage the process.

Figure: Typical Elements of Process Image

Q. 7. Write the step by step sequence of actions taken up by OS when a
process is created?
Ans:
1. Create a process
2. Assign a unique process ID to newly created process
3. Allocate the memory for the process and create its process image
4. Initialize process control block
5. Set the appropriate linkages to the different data structures such as ready

queue etc.
6. Create or expand the other data structures if required.

Q. 8. Differentiate between process context switch and mode switch.

Ans:
Context Switch: Execution of a process may be stopped to respond an
interrupt. This exercise needs to save Process Image be saved of one
process and load process image of the new process loaded.
Here the processes are switched and processes keep on changing their
status as Running and Not running.

Mode switch: every process may switch in between a low privileged user
mode and high privileged kernel mode in its lifetime.

 Here, the process remains the same. Its status always remains as ‘Running’ and
only the mode of execution keeps on changing. Process switch requires more effort
than a mode switch.

Q. 9. Detail the process switching operation.

Ans:

If the process switch changes its state, process switch or context switch
occurs. The steps involved in this exercise are as follows:

1. Process context, including program counter and other registers is
saved.

2. Update the PCB of the process that was currently running state. The
new state assigned may be one of the other states (Ready, Blocked,
Ready/Suspend or Exit).

3. Move this updated PCB to appropriate queue (Ready; Blocked on
Event i; Ready/Suspend).

4. Select another deserving process for execution.
5. Update the PCB of chosen process and change the process state as

Running.
6. Update the memory management data structures.
7. Restore the context of the chosen process so that it can resume from

the point if it was interrupted last time, or can start its execution if it was
loaded for the first time.

Threads

Q. 1. What are the advantages of threads?
Ans:
The primary advantages of threads include low computation overhead, speed-
up and efficient communication.
Low switching overhead: A process thread state does not contain resource
allocation state and communication state, instead it contains only computation
state. This makes thread switch operation far lighter than process switch.

Speed-up: A process can be broken into multiple threads, which can run
concurrently. This mechanism can speed-up the execution speed of an
application on uniprocessors and multiprocessors, both.

Efficient Communication: Threads of a process can communicate with each
other using shared data space, thus this avoids the necessity of
communication system calls.

Q. 2. What are different types of thread?
Ans.
Threads are implemented in different ways. The main difference is on the
basis of kernel’s knowledge of thread existence. The methods of thread
implementation are Kernel Level Threads(KLTs), User Level
Threads(ULTs), hybrid threads.

Out of these three types, the kernel level threads are most expensive
to manage and the user level threads are the cheapest ones. The third type
tries to strike the balance between the rest two types. Experiments have
proved that switching between kernel level threads is 10 times faster than
process switching, and switching user level threads is over 100 times faster
than process switching. Though so fast, ULTs cannot support pure
multiprocessing and though slow, KLTs provide better parallelism and speed-
up in multiprocessor systems.

Q. 3. Explain the working of Kernel Level Threads.
Ans:

The threads require some mechanism to create them, manage them in
their lifetime and then destroy them. In Kernel Level Threads (KLTs), kernel
provides library to create, schedule, manage and destroy the threads. as
these library functions are executed by kernel, it always invokes system calls
for every activity involving threads.

When a process calls upon create_thread system call, the kernel
assigns a thread ID to it and allocates a thread control block(TCB). This TCB
has a pointer to the PCB of its parent process. In case of thread switch, the
system saves context of the interrupted thread in its TCB. Then the dispatcher
considers all the TCBs in hand, and selects a ready thread. If this new thread
belongs to the same process whose thread was earlier interrupted, new
process context is not required to be loaded. Otherwise, process switch
occurs along with thread switch and the execution resumes. Basically, if both

the threads belong to the same process, then actions to save and load
process context are unnecessary. This concept reduces the switching
overhead to great context. Moreover, in case of multiprocessor systems, the
kernel can schedule multiple ready threads belonging to same process on
multiple processors, thus can exploit parallelism to the fullest!

Q. 4. State advantages and disadvantages of Kernel Level Threads.

Ans:
Advantages:
1. KLT offers all advantages that a process has, and still it proves better

than a process being ‘lightweight’.
2. KLTs belonging to same process can be scheduled in parallel on multiple

processes, thus exploiting the parallelism in true sense

Disadvantages:
1. KLTs are solely handled by Kernel and so thread switching is also carried

out by kernel in case of event handling. This proves to be very expensive
operation even if the interrupted and next scheduled threads both belong
to the same process.

Q. 5. What are User Level Threads?

Ans:
The User Level Threads(ULTs) are created and implemented by thread library
that is provided by the programming language in which the threads are coded.
The thread code is linked with the process. This management does not
involve kernel, i.e. in other words, the kernel has no knowledge of ULTs
existence. The system schedules the process, and the process threads are
identified by the thread library as ready, and internal scheduling is again done
by the thread library.
ULT creation and operation:

1. A process calls upon a library function create_thread for creation of the new
thread.

2. The library creates a TCB(Thread Control Block) for the newly created thread
and starts considering if this thread is worth ‘scheduling’.

3. When the thread in running state invokes the library function to synchronize
with other thread, library function checks the new runnable thread and
switches to that thread of process. This all happens without any intervention
of kernel.

4. If the thread library cannot find any runnable thread, the process invokes a
‘block me’ system call. This process gets unblocked when some event
activates on its threads.

5. The thread library code is part of each process. It performs ‘scheduling’ to
select a thread and organizes its execution. The information stored in TCB is
used by thread library while selecting the next runnable thread.

6. When a particular thread is scheduled, its CPU state becomes the process’
CPU state, and the process stack pointer points the thread stack.

Q. 6. What are the advantages and disadvantages of User level
Threads?
Ans:

Advantages:
1. As the thread synchronization and management is handled by thread

library, this avoids the overhead of invoking the system calls.
2. The thread switching is simpler and cheaper than in KLTs.
3. This kernel independence enables each process to have its own

scheduling policies that suits its own nature.
Disadvantages:

1. The kernel isn’t aware of ULT existence; hence, it cannot distinguish
between a thread and a process.

2. Blocking of a thread blocks the entire parent process.
3. Since the kernel schedules a process and then thread library

schedules a process within a process, at most only one thread can be
in operation at any time.

4. ULTs does not support pure multiprocessing as only one thread in one
process is active at a time.

Solutions:
1. The program can be written to create multiple processes than multiple

threads. this overcomes all the disadvantages given above. But this
solution cannot have advantages of thread switch and has to incur
overhead of process switch.

2. Blocking of threads mentioned in disadvantage number 2 cannot be
avoided with the technique of jacketing. In this, instead of executing a
blocking call to system calls, the thread invokes an application level I/O
jacket routine which in turn does the thread’s calling job.

Q. 7. What is a hybrid thread model?

Ans:
A hybrid thread model has both user-level and kernel-level threads and a
method of associating ULTs with KLTs. These different methods of
association provide various combinations of the low switching overhead of
ULTs and the high concurrency and parallelism of KLTs.
These association methods can be summarized as: Many-TO-One, One-to-
One and Many-to-Many.

TCBs

PCB PCB

TCBs TCBs

PCB

Many-to-One One-to-One Many-to-Many

Figure: Association of KLTs with ULTs

The kernel creates KLTs in a process and associates a Kernel Thread Control
Block with each corresponding KLT.

In Many-to-One association method, a single KLT is created in each

process by the kernel and all ULTs created in a process by thread library
associated with this KLT. This approach gives an effect similar to more ULTs.
Advantages:
1. ULTs can be concurrent without being parallel.
2. Thread switching is cheap
Disadvantage: Blocking of an ULT in a process blocks all threads in the
process.

In the One-to-One association, each ULT is mapped permanently into
a KLT. This provides an effect very similar to KLTs.
Advantages:
1. This association gives pure multiprocessing on multiprocessor systems
2. Blocking of one thread in a process does not block rest of the threads in

the same process.
Disadvantage: switching between threads is done at kernel level and thus
incurs high overhead.

 The Many-to-Many association produces an effect which is very
similar to one ULT being mapped into any KLT. This achieves parallelism
between ULTs by mapping them into different KLTs.
Advantages:
1. Achieves high parallelism
2. Low thread switching overhead
3. Blocking of one thread does not block rest of the threads in the process.
Disadvantages: system is quite complex to implement.

Q. 8. What is a multithreaded process model?
Ans:
In a multithreaded environment, a thread is called lightweight process while, a
process is simply a unit of resource allocation and unit of protection.
The process maintains only:

 A virtual address space to store the process image

 Protected access to processors and with rest of the processes for
interprocess communication, with files and with I/O devices.

The thread contains:

 A thread execution state

 A thread context, generally saved when process isn’t in Running
state.

 A thread execution stack

 Thread storage area to store local and temporary data

 A shared access to resources of its process.

Figure: Single threaded Process Model

Figure: Multithreaded Process Model

As shown in above figure, all the threads of the same process share
process control block and user address space, i.e. they share the
execution state and the resources assigned to the same process.

Q. 9. List the operations associated with process threads?
Ans:
There are four basic thread operations associated with a change in thread
state viz: spawn, block, unblock, finish.

 Spawn: Typically, when a new process is spawned, a thread for that
process is also spawned. Also, a thread can also spawn another
threads in the same process. The new thread also gets its own
registers, context and the stack space.

 Block: when a thread waits on some event, it blocks itself and the
thread context is saved.

 Unblock: when the event on which the process is waiting occurs, the
thread gets shifted to ready queue.

 Finish: when a thread finishes its execution, its register and stack
contexts are deallocated.

Q. 10. Explain the different process-thread relationships.
Ans.
The process and its thread share either of four relationships amongst them
as: One-to-One, Many-to-Open

Q. 11. List some typical uses of threads in single user environment.
Ans:
Though not a complete list, some applications of threads in single user
environment are:

 Foreground and background work: multiple threads of a single
program can execute some processes in background and foreground
independent of each other. E.g. the HTML pages when load, different
processes load text, images, videos and rest of the graphics
independent of each other.

 Asynchronous processing: asynchronous elements of program are
implemented as threads.

 Execution speed: as threads can execute independent of each other,
one batch of jobs can be processed by some threads while the other
thread may read next batches of job.

 Modular program development : projects or programs those accept
inputs from various sources and pass on information to various
modules of processing, are better be implemented using threads.

System Calls for Process Management

Q. 1. List the different system calls used for process management

Ans:

The process management related system calls are listed as follows,

Sr No System Call Description

1 fork() This system calls creates a new process.

2 exec() This call is used to execute a new program on a

process.

3 wait() This call makes a process wait until some event

occurs.

4 exit() This call makes a process to terminate

5 getpid() This system call helps to get the identifier

associated with the process.

6 getppid() This system call helps to get the identifier

associated with the parent process.

7 nice() The current process priority can be changed with

execution of this system call.

8 brk() This call helps to increase or decrease the data

segment size of the process.

9 Kill() The forced termination of any process can be

executed with this system call.

10 Signal() This system call is invoked for sending and
receiving software interrupts

Q. 2. Explain working of fork() system call

Ans:

The fork() system call is used to create a new process. When the system

executes this system call in response to process creation request, following

steps are carried out.

1. The operating system allocates a slot in the process table for the newly

created process.

2. This new process, i.e. child process is then assigned a unique ID.

3. System then creates a logical copy of the parent process context.

4. The file and inode table counters associated with parent process are

incremented as this area may be shared between parent process and the

child process.

5. The child process ID is returned to the process and ‘0’ value is assigned to

the child process.

6. All the above steps are carried out in kernel of the parent process.

7. The control of execution may remain with the parent process, may be

transferred to child process or handed over to a third process leaving the

parent and child processes in ‘Ready-to-Run’ state.

Q. 3. What happens when the system terminates a process with exit()

system call?

Ans: The exit() system call is executed to terminate a process. This call is

generally executed with some status code which is passed as an argument to

the call. This status_code indicates the termination status of the

corresponding process. The sequence of actions taken by OS in response to

exit() is as follows,

1. Kernel sends a close call to all open files of the process.

2. Kernel also releases the memory assigned to the pr0ocess for execution.

3. The User area of the process is destroyed by the system.

4. The process structure is not destroyed though, and is retained till the

parent process destroys the same.

5. The process though terminated, still exists as a dead process and is

generally called a Zombie process.

6. The exit call also sends signal to the parent process indicating the

termination of its child process.

Processes in Unix, Solaris and windows
2000 thread and SMP Management.

Q. 1 what are the Windows process attributes?

Ans:

 Windows supports concurrent processing and multithreading. Windows process

object attributes can be listed as,

Attribute Description

Process ID Unique process identifier

Security Descriptor Describes process owner, process access rights for users,

process access permissions for the users of the system.

Base priority A baseline execution priority for the process and its threads

Default processor

affinity

In a multiprocessor environment, the set of processors on

which processes or threads can run.

Quota limits The maximum amount of paged and nonpaged system
memory, paging file space, and processor time a user’s
processes can use.

Execution time The total amount of time all the threads of the process have

spent with processor.

I/O counters The variables those keep record of the number and types of

I/O operations that the process’s threads have performed.

VM operation

counters

The variables those keep record of the number and types of

virtual memory operations that the process’s threads have

performed.

Exception/debugging

ports

These are interprocess communication channels to which the

process manager can communicate in case the process

causes any kind of exception.

Exit status The reason of process termination.

Q. 2 what are the windows thread attributes?

Ans:

The windows thread attributes can be listed as given in the following table:

Attributes Description

Thread ID A unique ID assigned to thread

Thread context This consists of register values and other data that defines the

executions state of the thread

Dynamic priority The execution priority of the thread at any given moment

Base priority The basic priority assigned to the thread. This is also the lowest

priority level the thread can have.

Thread

processor affinity

In a multiprocessor environment, the set of processors on which

processes or threads can run.

Thread

execution time

The total time a thread time has spent with processor; which

includes user mode and kernel mode processing, both.

Alert status This is a flag that denotes in case a waiting thread can execute

an asynchronous procedure call.

Suspension

count

This is count of the number of times the thread’s execution gets

suspended without being resumed..

Impersonation

token

This is a temporary access token that permits a thread to execute

operations on behalf of another process.

Termination port These are interprocess communication channels to which the

process manager can communicate when the thread terminates.

Thread exit

status

This field describes the reason for the thread’s termination.

Q. 3 what are the different types of processes in UNIX?

Ans:

The Unix OS has three types of processes as: user process, kernel process and

daemon process.

User process: The low privileged processes created on behalf of user are called

user processes.

Kernel process: The high privileged processes initiated by operating system in

response to calls made by user processes are called kernel processes. The system

calls are the kernel processes.

Daemon process: these processes perform the functions in a system wide basis.

The functions are generally of auxiliary kind, but they are very important from the

point of controlling of the computing environment of the system. These processes

once created, exist throughout the life time of the process. E.g. print spooling,

network management.

