8.3 Practice Set

- 1. What is a matrix and how can a matrix be used to solve a system of equations?
- 2. What are row operations and how are they related to the process of elimination?
- 3. When are matrices easier to use than other methods to solve a system?
- 4. What does it mean if you get a row of 0's while you are performing row operations?
- 5. What does it mean if you get all 0's in a row on the left side of an augmented matrix, but a non-zero number on the right side of the augmented matrix?

Solve each of the following systems of equations using matrices. If the system is dependent or inconsistent, state this.

$$\begin{cases} x + 4y = 8 \\ x - y = 0 \end{cases}$$

7.
$$\begin{cases} -3x + 7y = 10 \\ 2x + y = -1 \end{cases}$$

8.
$$\begin{cases} 9x - 6y = -12 \\ 3x - y = 1 \end{cases}$$

9.
$$\begin{cases} 5x - y - 15z = -2\\ 4x + y - 2z = 12\\ -5y + 6z = -4 \end{cases}$$

10.
$$\begin{cases} 4x - 3y + z = 24 \\ 2x + y = 7 \\ x - 2z = -6 \end{cases}$$

11.
$$\begin{cases} x + y - z = 3 \\ -x - y + z = -3 \\ -2x + 2y + 2z = -6 \end{cases}$$

12.
$$\begin{cases} 6x + 10y - 2z = 6 \\ x - y + z = 15 \\ -3x + 7y - 4z = -24 \end{cases}$$

13.
$$\begin{cases} 2x + 3y - z = -1 \\ 3x - 4y + 7z = 18 \\ -4x - 6y - 2z = 4 \end{cases}$$

14.
$$\begin{cases} 5x - 2y + 4z = 1\\ 20x + 8y - 16z = 4\\ 15x - 2y + 8z = 4 \end{cases}$$

15.
$$\begin{cases} 2x & 5z = 15 \\ -5x - 4y & = -25 \\ x - y - 15z = -10 \end{cases}$$

Distributed Practice Problems

Perform the indicated operations and/or simplify each of the following expressions completely.

16.
$$(-7x^3 + 4x^2 + 9x - 1) - (-3x^3 + 9x^2 - 7x + 5)$$

17.
$$(4x + 3)(4x - 3)(5x + y)$$

18.
$$(5x^{-3}y^2)^{-3}(4x^{-5}y^3)^2$$

19.
$$(5x^4 - 7x^3 + 2x - 1) \div (x + 3)$$

$$20. \qquad \frac{x^{-1} + y^{-1}}{x^{-3} + y^{-3}}$$

$$21. \qquad \left(\sqrt{x-4}+3\right)^2$$

22.
$$\sqrt[5]{-64x^{18}y^6}$$

23.
$$\log_2(x+3) + \frac{1}{2}\log_2 x - 2\log_2(x-1)$$

24.
$$\sqrt[4]{\frac{16}{9x^3}}$$

25.
$$x(x-1)(3x+5) - (x+1)(x-2)$$