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8.5  Systems of Non-linear Equations in Two Variables 

 

Often, we are interested in finding the places where different graphs 

intersect each other because this gives us useful information about the 

corresponding relations. For example, in calculus, we need endpoints for 

integration to find the areas of regions that the graphs contain. This is 

helpful to find the center of mass in physics and engineering 

applications.  

 

To solve a system of non-linear equations in two variables, the general 

method of substitution is the approach we most often need. By solving 

each equation for the same variable, typically ‘𝑦’, and then setting the 

expressions equal to each other, we can arrive at a single equation in a 

single variable. Of course, we can also solve one of the equations for one 

of the variables and substitute that expression into the other equation to 

arrive at a single variable equation. 

 

For example, if we have the two equations 𝑦 = 𝑥2 + 2𝑥 (a parabola) and 

𝑦 = 3𝑥 + 2 (a line), we can find the intersection points of these two 

graphs by setting them equal to each other and solving to get the 𝑥-

values of those points: 

𝑥2 + 2𝑥 = 3𝑥 + 2 

 

We recognize this as a polynomial equation, specifically a quadratic, so 

we bring everything to one side to get 0 on one side and see if we can 

factor (or use the quadratic formula). It is very important to be able to 

identify the type of equation you have in order to know which technique 

to use to solve it. Here, we obtain: 

𝑥2 − 𝑥 − 2 = 0 

(𝑥 − 2)(𝑥 + 1) = 0 

𝑥 − 2 = 0;   𝑥 + 1 = 0 

𝑥 = 2;   𝑥 = −1 
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We have found the x-values of the points and we could plug these into 

either equation to get the corresponding 𝑦-values. It is also very helpful 

to graph both relations to see a picture of the intersections and interpret 

the meaning and validity of solutions. 

 

For 𝑥 = 2, we obtain 𝑦 = 3(2) + 2 = 8, which gives us the point (2, 8). 

For 𝑥 = −1, we have 𝑦 = 3(−1) + 2 = −1, which gives us the point 

(−1, −1). 

 

  
 

Now that we can see the meaning of solving a non-linear system of 

equations is just finding the intersection points of the corresponding 

graphs, we can imagine many examples that include a combination of 

the graphs we have learned. 

 

 

 

 

 

 

𝑥 

𝑦 

(-1,-1) 

(2,8) 
To graph the line, you could use the 

slope and y-intercept, since the 

equation of the line is already in 

slope-intercept form. To graph the 

parabola, you could complete the 

square to find the vertex and then 

plug in one other point and use 

symmetry. If you complete the square 

on the parabola, you should get 

 𝑦 = (𝑥 + 1)2 − 1 (Review Sections 

2.8 and 6.1 if needed). 
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Some Possibilities: 

 

 

 

 

 

 

Some of the systems above would require more advanced equation 

solving methods than we have done in this class, but these examples do 

give you the big picture. We will restrict our future examples to ones 

𝑥 

𝑦 

𝑥 

𝑦 

𝑥 

𝑦 

𝑥 

𝑦 

𝑥 

𝑦 

𝑥 

𝑦 

Two lines (we did this in 

Section 8.1 with linear 

systems) with one 

intersection. 

An absolute value 

function and a circle 

with two intersection 

points. 

An absolute value 

function and a circle 

with four intersection 

points. 

 

A logarithmic function and 

a hyperbola with three 

intersection points. 

A parabola and an 

ellipse with four 

intersection points. 

A line and an 

exponential function 

with two intersection 

points. 
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with resulting equations that can be solved by the methods of this 

course. You will learn about numerical methods to solve more 

complicated equations in future courses, such as calculus. But there are 

many that we already have the skills to solve! 

Examples 

 

Find the intersection points for each pair of relations. Draw the graphs 

together on the same set of coordinate axes to see that your solution 

makes sense.  

 

1. 𝑦 = 𝑥2;   𝑦 = 3𝑥 + 4 

 

 

First, solve the system:        𝑦 = 𝑥2;   𝑦 = 3𝑥 + 4 

 

𝑥2 = 3𝑥 + 4 

𝑥2 − 3𝑥 − 4 = 0 

(𝑥 − 4)(𝑥 + 1) = 0 

𝑥 = 4; 𝑥 = −1 

 

Now, we can find the corresponding 𝑦-values. We can use either of the 

original equations since the points are common to both. The parabola is 

easy to use here. 

 

For 𝑥 = 4, 

 𝑦 = 42 = 16 

 

For 𝑥 = −1,  

  𝑦 = (−1)2 = 1 
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So, the solutions are (𝟒, 𝟏𝟔) and  (−𝟏, 𝟏). Looking at the graph, we 

will see that these are reasonable solutions. (Sometimes checking the 

graph is how you can find algebraic errors). 

 

It is important to recognize the type of graph that goes with each 

equation to know the method to graph each. Here, we have a parabola 

and a line. We use the slope 𝑚 = 3 and the y-intercept (0,4) to graph 

the line. We can graph the parabola by plotting the vertex (0,0) and then 

one other point and use symmetry for a final point.  This one is 

particularly easy as it is the basic parabola graph. 

  

 
 

 

2. 𝑥2 + 𝑦2 = 16;   𝑥 + 3𝑦 = 4 

 

Using a simple substitution is easiest here. Solving the second equation 

for 𝑥, we get 𝑥 = 4 − 3𝑦. Now, if we substitute this into the first 

equation, we get: 

 

(4 − 3𝑦)2 + 𝑦2 = 16 

𝑥 

𝑦 

After graphing both, we see that 

there are two intersection points. We 

can also see about where they should 

be to see if our answers make sense. 
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16 − 24𝑦 + 10𝑦2 = 16 

10𝑦2 − 24𝑦 = 0 

2𝑦(5𝑦 − 12) = 0 

𝑦 = 0; 𝑦 =
12

5
 

 

Now, we can find the corresponding 𝑥-values. Remember, we can use 

either of the original equations to find these. The line is easy to use here 

and we already have it solved for 𝑥  (𝑥 = 4 − 3𝑦), so we can use that 

form for ease. 

 

For 𝑦 = 0, 

 𝑥 = 4 − 3(0) = 4 

 

For 𝑦 =
12

5
,  

  𝑥 = 4 − 3 (
12

5
) =

20−36

5
= −

16

5
 

 

So, the solutions are (𝟒, 𝟎) and  (−
𝟏𝟔

𝟓
,

𝟏𝟐

𝟓
).  

 

Here, we have a circle centered at (0, 0) of radius 4 and a line.  

 

𝑥 

𝑦 

The solutions make sense looking at 

the graph. If you rewrite the second 

solution as a pair of mixed numbers 

instead, it is easy to see: (−3
1

5
 , 2

2

5
 ). 
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3. 𝑦 = |𝑥|;   𝑥 + 2𝑦 = 5 

 

Using a simple substitution is easiest here. If we substitute |𝑥| from the 

first equation into the second equation for 𝑦, we get: 

 

𝑥 + 2|𝑥| = 5 

2|𝑥| = 5 − 𝑥 

|𝑥| =
5 − 𝑥

2
 

 

 

𝑥 =
5−𝑥

2
   𝑥 = − (

5−𝑥

2
) 

2𝑥 = 5 − 𝑥  −2𝑥 = 5 − 𝑥 

3𝑥 = 5   −𝑥 = 5 

𝑥 =
5

3
   𝑥 = −5 

 

Now, we can find the corresponding 𝑦-values. The absolute value 

function is easy to use here for this purpose. 

 

For 𝑥 = 5/3, 

 𝑦 = |
5

3
| =

5

3
 

 

For 𝑥 = −5,  

  𝑦 = |−5| = 5 

 

So, the solutions are (
𝟓

𝟑
,

𝟓

𝟑
) and  (−𝟓, 𝟓).  

 

Graphing the absolute value function and the line, we obtain the 

following picture:  

Notice the resulting equation has 

absolute value, so we must isolate 

the absolute value and split into two 

equations. 
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4. 𝑦 = √𝑥 + 2;    
  𝑥2

4
−

  𝑦2

9
= 1 

 

Since the first equation is already solved for 𝑦, it is convenient to 

substitute this into the second equation, we get: 

 

𝑥2

4
−

(√𝑥 + 2)
2

9
= 1 

 

𝑥2

4
−

𝑥 + 2

9
= 1 

 

9𝑥2 − 4(𝑥 + 2) = 36 

 

9𝑥2 − 4𝑥 − 8 = 36 

 

9𝑥2 − 4𝑥 − 44 = 0 

 

(𝑥 + 2)(9𝑥 − 22) = 0 

 

𝑥 

𝑦 

The solutions make sense looking at 

the graph. If you rewrite the first 

solution as a pair of mixed numbers 

instead, it is easy to see: (1
2

3
 , 1

2

3
 ). 



 

778 
 

 

𝑥 = −2; 𝑥 =
22

9
 

 

To find the corresponding 𝑦-values, the radical equation appears the 

simpler choice. 

 

For 𝑥 = −2, 

 𝑦 = √−2 + 2 = √0 = 0 

 

For 𝑥 =
22

9
,  

  𝑦 = √
22

9
+ 2 = √

22+18

9
= √

40

9
=

2√10

3
 

 

So, the solutions are (−𝟐, 𝟎) and  (
𝟐𝟐

𝟗
,

𝟐√𝟏𝟎

𝟑
).  

 

Here, we have a hyperbola centered at (0, 0) with 𝑎 = 2 and 𝑏 = 3 and 

a basic square root function shifted to the left by 2.  

 
 

 

𝑥 

𝑦 

The solutions make sense looking at 

the graph. If you rewrite the second 

solution as a pair of decimals instead, 

it is easier to see: (2.44 , 2.11 ). 
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5. 𝑦 =
1

𝑥−1
;     𝑦 = 2𝑥 + 4 

 

Since the first equation is already solved for 𝑦, it is convenient to 

substitute this into the second equation, we get: 

 

1

𝑥 − 1
= 2𝑥 + 4 

 

1 = (2𝑥 + 4)(𝑥 − 1) 

 

1 = 2𝑥2 + 2𝑥 − 4 

 

0 = 2𝑥2 + 2𝑥 − 5 

 

 

We need to use the quadratic formula here since we cannot factor. 

 

𝑎 = 2; 𝑏 = 2; 𝑐 = −5 

 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

 

𝑥 =
−2 ± √22 − 4(2)(−5)

2(2)
 

 

𝑥 =
−2 ± √4 + 40

4
 

 

𝑥 =
−2 ± √44

4
=

−2 ± 2√11

4
=

−1 ± √11

2
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To find the corresponding 𝑦-values, the linear equation appears the 

simpler choice. 

 

For 𝑥 =
−1+√11

2
, 

 𝑦 = 2 (
−1+√11

2
) + 4 = −1 + √11 + 4 = 3 + √11 

 

For 𝑥 =
−1−√11

2
, 

 𝑦 = 2 (
−1−√11

2
) + 4 = −1 − √11 + 4 = 3 − √11 

 

So, the solutions are (
−𝟏+√𝟏𝟏

𝟐
, 𝟑 + √𝟏𝟏) and  (

−𝟏−√𝟏𝟏

𝟐
, 𝟑 − √𝟏𝟏).  

 

As decimals, these solutions are easier to interpret: (𝟏. 𝟏𝟔, 𝟔. 𝟑𝟐) 

and (−𝟐. 𝟏𝟔, −𝟎. 𝟑𝟐). 

 

Here, we have a line with 𝑦-intercept (0,4) and slope 𝑚 = 2 and a basic 

rational function shifted to the right by 1.  

 
 

𝑥 

𝑦 


	Examples

